The Robot-Pedestrian Influence Dataset for Learning Distinct **Social Navigation Forces**

Subham Agrawal, Nico Ostermann-Myrau, Nils Dengler, and Maren Bennewitz Humanoid Robots Lab, University of Bonn, Germany

Motivation:

- Pedestrians do not always avoid robots during navigation but also show neutrality towards the robot and even attraction behavior
- Existing datasets do not that clearly capture or annotate these various reactions of pedestrians to robots
- We need to learn these pedestrian behaviors to enable robots to reason about them

Our Approach:

- Collection of the Robot Pedestrian Influence (RPI) dataset that captures pedestrian reactions to robots (avoidance, neutrality, and attraction) under various situations
- Novel Neural Social Robot Force Model (NSRFM) model that enhances traditional social force model for improved pedestrian trajectory prediction
- A pedestrian simulation system for learning and benchmarking robot navigation policies based on the NSRFM

Dataset

Results

Breakdown of pedestrian behavior in our dataset					
Robot Type	Attraction (%)	Avoidance (%)	Avg. Distance (m)		
HSR (Stationary)	4.39	27.17	3.05		
MPO700 (Stationary)	1.6	33.95	3.26		
Go1 (Stationary)	7.82	26.39	3.24		
Go1 (Moving)	7.96	26.1	3.41		

- Data collected from 2 outdoor environments
- **Yolov11** model for tracking pedestrians while following anonymization protocol
- **18,699 trajectories** recorded in over two weeks

3 scenarios:

- Pedestrians only (PD)
- **Pedestrians with Stationary Robot (PD-SR)**
- **Pedestrians with a Moving Robot (PD-MR)**

NSRFM

Comparison of our dataset with state-of-the-art

Dataset	Trajectories	HRI Trajectories	Percentage
ETH	750	0	0 %
JRDB	1,786	28	1.57 %
RPI (Ours)	18,669	3,071	16.45 %

Comparison of our NSRFM model against state of the art

Madal	Average Displacement Error (ADE) ↓		
widdei	ETH	JRDB	RPI (Ours)
NSRFM (with group force)	0.474	0.217	0.744
NSRFM (without group force)	0.506	0.217	0.744
NSRFM (without robot force)	0.506	0.38	0.753
SRFM [13]	0.616	0.336	1.117
SFM [10]	0.616	0.412	1.118

Summary

Large dataset collected with 3 stationary and moving robots –

- Five separate neural networks learn and compute the individual force factors of the NSRFM
- Output of all the models is summed to compute the final pedestrian force and subsequent velocity
- Toyota HSR, Neobotix MPO700, and Unitree Go1 Significantly more trajectories and human interactions in the introduced dataset compared to ETH and JRDB datasets The **NSRFM** model demonstrates **lower ADE** compared to **SFM** and **SRFM** baselines on all the datasets, demonstrating success in learning pedestrian behavior towards robots

Contact

Website

Nils Dengler

dengler@cs.uni-bonn.de

Humanoid Robots Lab

University of Bonn

Germany

Paper