PACE

TERNATIONAL CONFEREN ON ROBOTICS AND AUTOMATION

IC RA

Proactive Assistance in Human-Robot Collaboration through Action-Completion Estimation

Davide De Lazzari¹, Matteo Terreran¹, Giulio Giacomuzzo¹, Siddarth Jain², Pietro Falco¹, Ruggero Carli¹, Diego Romeres²

¹ University of Padua, Italy ² Mitsubishi Electric Research Laboratories, Cambridge, MA, USA

OVERVIEW

TL;DR: We developed a **reinforcement learning** policy that proactively determines when to assist humans during assembly. We employ a new **Dynamic Time Warping** (DTW) algorithm to estimate the **completion percentage of the current human action**.

Tack	
Idsk	

- Human and robot concurrently perform separate tasks.
- The robot performs a sequence of M *robot-task* actions (a_i^R) .
- The human performs a sequence of N human actions (a_i^H) .

start

- The robot shall help the human to perform *joint* actions (a_I^J) .
- Prior to performing a *joint* action, the robot must pause its task and perform a

Objective Assist the human at the right time to minimize total idle time: $\Delta_{\text{total idle}}^R + \lambda \Delta_{\text{total idle}}^H$ Data

20 demonstrations including action durations and human hand trajectories.

Contributions

 A_L

end

done

- **OS-DTW** wp: **NEW** Open-end Soft **Dynamic Time Warping** with **Windowed-Pearson** distance for real-time action completion estimation.
- **PACE Framework**: RL agent proactively assists humans, ensuring seamless collaboration.
- **Real-world Validation: Collaborative chair assembly**, showing improved collaboration efficiency, quantitative + subjective evaluations.
- **SotA real-time human action completion estimation**: OS-DTW _{WP} outperforms existing DTWbased methods on real data.

HUMAN ACTION COMPLETION ESTIMATION

Open-End Dynamic Time Warping

Open-end DTW aligns a signal to a percentage of a reference by minimizing the cumulative distance between corresponding samples

Alignment cost (informal): $\propto \min^{\gamma} \sum \delta\left(x_i, y_{\pi(i)}\right)$

	Soft-minimum	Distance
OE-DTW	X	Euclidean (EU)
OS-DTW _{EU} (ours)	\checkmark	Windowed-Pearson (WP)
OS-DTW _{WP} (ours)	\checkmark	Windowed-Pearson (WP)

Soft-minimum operator:

- introduces a smoothing factor that weighs all possible paths
- ensures that slight distortions do not dominate the final alignment

Euclidean distance:

- effective for signals with consistent absolute magnitudes across trials
- sensitive to vertical offsets and amplitude variations

Windowed-Pearson distance:

- invariant to absolute shifts
- effectively captures local patterns

$$\delta_{\mathrm{WP}}^{w}(\mathbf{x}_{i}, \mathbf{y}_{j}) := \sum_{k=0}^{d-1} \left(1 - \frac{\mathrm{Cov}(\mathbf{x}_{i-w+1:i,k}, \mathbf{y}_{j-w+1:j,k})}{\sqrt{\mathrm{Var}(\mathbf{x}_{i-w+1:i,k}) \mathrm{Var}(\mathbf{y}_{j-w+1:j,k})}} \right)$$

EXPERIMENTS & RESULTS

Quantitative Results

Rail Placing

Screwing

Phase Estimation MSE	Rail Placing	Screw Placing	Screwing
OE-DTW	0.100	0.091	0.168
OS-DTW _{EU} (ours)	0.012	0.013	0.052
OS-DTW _{WP} (ours)	0.002	0.012	0.006