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Abstract— Human motion prediction is critical for ensuring
the seamless integration of mobile robots in dynamic human
environments like warehouses, hospitals, and manufacturing
plants. While state-of-the-art models are highly performant on
tracking human behavior in offline datasets, their integration
on mobile robots operating in complex environments gives rise
to deployment challenges like accounting for out-of-distribution
instances and human perceptions. In this work, we methodically
investigate the implications of human motion prediction on
robot navigation performance, human productivity, and human
perceptions in a scenario involving navigation among two human
subjects in a constrained workspace. Through a large-scale user
study at two different sites (currently in progress), we expect to
uncover practical insights and future directions for embodying
human motion prediction models on mobile robots operating in
dynamic environments.

I. INTRODUCTION

Autonomously navigating mobile robots have the potential
to complete a wide variety of tasks in a wide variety of human
environments. Algorithms for safely and efficiently navigating
around humans, referred to as Social Robot Navigation (SRN)
algorithms, can often be decomposed into a prediction task and
a control task [16]. Existing methods for prediction include
optimization-based models which leverage graphs [23, 24],
physics-inspired forces [9], or game-theory [27] along with
assumptions such as cooperative collision-avoidance behavior
and rationality to predict optimal future trajectories for hu-
mans, and learning-based models which leverage datasets of
humans navigating crowded spaces to learn to predict future
trajectories directly from histories of states [6, 20, 21], using
a learned reward function [31], or using learned parameters of
a physics model [30]. The predictions are then integrated with
a control method, most commonly model-predictive control
(MPC) [15, 18] or reinforcement learning (RL) [2, 3, 12, 13].

Prediction model use in SRN allows robots to execute
anticipatory behaviors, enabling them to navigate more safely
and fluently around users. However different models make
different sets of assumptions that affect their predictions, and
by extension, the behavior of the robot. For instance, models
based on cooperative collision avoidance assume that humans
will accept part of the responsibility for conflict resolution
[17], however when distracted or rushing this may not always
be the case. In the case of learning-based predictors, the
distribution of scenarios encountered at deployment is assumed
to be sufficiently similar to those of the training data, however
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existing datasets are typically collected in one or a few fixed
areas which limit the diversity of interactions [6, 20, 21]. SRN
algorithms are promised to be deployed in many substantively
different scenarios which admit distinct navigation behaviors,
thus it remains unclear whether models trained on existing
datasets are sufficient for deployment across varied envi-
ronments, or whether alternative solutions such as scenario-
specific datasets must be employed [26].

In this work, we investigate the effect of various existing
prediction strategies on users interacting with a socially navi-
gating mobile robot. We instantiate a collaborative workspace,
which mimics many downstream environments for mobile
robot deployment, and are completing a user study in which
we hypothesize that increasing prediction accuracy will lead
to improved task performance, increased user comfort, and
decreased physical and cognitive load on users.

While prior laboratory studies on social robot navigation
and human motion prediction exist, this work sets itself apart
by focusing on prediction rather than control strategies [14],
and exploring several different models rather than focusing the
investigation on a single algorithm [15, 18, 29]. Furthermore,
we are conducting a multi-site investigation, mirroring our
experiments at two sites (University of Michigan and LAAS-
CNRS) with two substantially different robot embodiments
(Hello Robot Stretch and Willow Garage PR2, see Fig. 1).
This will allow us to investigate differences in experimental
outcomes resulting from robot platform size.

The study is still in progress, however we anticipate the
results will provide insight into the design of human trajectory
prediction algorithms for use in mobile robots, as well as
the development of control algorithms for mobile robots
leveraging human trajectory prediction models.

II. PROBLEM SETTING AND ALGORITHMS

In order to study the use of distinct motion prediction
models in social robot navigation, we desire a social navigation
controller that allows for integrating several representative
prediction models into it. To that end we instantiate a general-
purpose social navigation model predictive controller, and
define the integration of prediction models into its cost func-
tion. We then detail a set of prediction models operating at
several levels of sophistication, which result in distinct social
navigation behaviors without prediction-model specific tuning
of the controller.

A. Problem Statement

We consider a robot navigating among n ≥ 1 human agents
in a workspace W ⊆ R2 with a set of static obstacles Wobs ⊆
W . The robot starts from an initial configuration sR and moves



(a) University of Michigan. (b) LAAS-CNRS.

Fig. 1: Footage from our experiments at the University of Michigan (a) and LAAS-CNRS (b). In this work, we seek to investigate the implications of human
motion prediction quality for robot navigation performance and human impressions during sustained close-quarters interaction.

towards a goal gR by following a policy πR, while humans
navigate from their initial configurations si towards their goals,
gi by following a policy πi, i ∈ N ; agents’ goals are unknown
to one another. The robot occupies an area AR ∈ W , and each
human occupies an area Ai ∈ W . We assume that the robot ob-
tains observations of the world state, consisting of observations
of human and static obstacle positions (stR, s

t
1:n,Wobs), and

uses a length-h history of observations to determine controls
ut
R = πR(s

t−h:t
R , st−h:t

1:n ,Wobs). Our goal is to control the
robot such that it reaches goal gR safely and efficiently, while
also abiding by social norms.

B. Social Robot Navigation as Model Predictive Control

One way to determine πR is to formulate social navigation
as a discrete-time optimal control problem and solve for πt

R

using a model predictive control framework. We employ the
following formalization:

u∗ = argmin
u∈U

J (sR, s1:n)

s.t. st+1
R = g(st, ut)

s1:n = f(st−h:t
R , st−h:t

1:n ,Wobs)),

(1)

where sR is a robot state rollout obtained by evaluating
prospective control sequence u from control space U using
dynamics function g, s1:n is a set of trajectory predictions
for co-navigating humans obtained using prediction model f ,
and J is a cost function capturing obstacle avoidance, social
awareness, and goal-directedness. We use the vanilla-MPC
cost from [15] augmented with an obstacle avoidance term:

J (sR, s1:n,Wobs) =agJg(sR) + adJg(s, s1:n)+

aoJo(sR,Wobs)
(2)

Where Jg penalizes distance to the goal:

Jg(sR) =

N−1∑
k=0

(sk+1
R − gR)

TQg(s
k+1
R − gR) (3)

Jd penalizes distance to other agents via Kirby’s Asymmet-
ric Gaussian Integral Function [10]:

Jd(sR, s1:n) =

N−1∑
k=0

n∑
i=1

A2
d(s

k+1
R , sk+1

i ) (4)

Jo penalizes penetration of obstacles:

Jo(sR,Wobs) =

N−1∑
k=0

1(AR(s
k+1
R ) ∩Wobs ̸= ∅) (5)

and ag , ad, and ao are constants controlling the relative
importance of each cost. Agent state transitions in (2) are
approximated using a constant velocity model.

C. Human Trajectory Prediction

To obtain the human trajectory predictions s1:n in (1),
we use functions f which uses a length-h (note h can
be 0)window of the history of environment observations
(st−h:t

R , st−h:t
1:n ,Wobs) to predict finite horizon length-T joint-

trajectory predictions. Specifically, we investigate the follow-
ing five models:

No model: The robot does not perceive the humans navi-
gating around it, that is n = 0, and thus Jd(·, ·) = 0.

Static: Humans are predicted to stay in place over
the full time horizon, that is f(st−h:t

R , st−h:t
1:n ,Wobs)

t′ =
(stR, s

t
1:n), t

′ ∈ {t+ 1, ..., T}.
Constant Velocity: Humans are predicted to continue mov-

ing at their current velocity, that is

di = (sti − st−1
i )

f(st−h:t
R , st−h:t

1:n ,Wobs)
t′

i = sti + di · (t′ − t),

t′ ∈ {t+ 1, ..., T}
(6)

Human Scene Transformer: The Human Scene Trans-
former (HST) [21] is a transformer-based generative model
which outputs a Gaussian Mixture Model distribution for
human i’s position at future timestep t′ as follows:

P (st
′

i |st−h:t
R , st−h:t

1:n ) =

M∑
m=1

wmN (s;σt′

m,i, µ
t′

m,i) (7)



where m is the number of trajectory modes predicted, wm

is a predicted likelihood weight for each mode, and σ, µ are
parameters predicted per-mode. To obtain the final prediction,
we sample a single trajectory from the most likely mode.

CoHAN: CoHAN [23–25] is a cooperative human-aware
navigation framework that uses a graph optimization to plan
the robot and human trajectories together. Different prediction
methodologies can be used in CoHAN, and for this study, we
chose the constant velocity prediction modality. When CoHAN
receives a goal for the robot, it extracts global paths for the
robot (through A*) and the humans (by interpolating positions
using constant velocity) in the given environment map. The
optimization framework takes these global paths, map data
and different social constraints into account while planning
the trajectories for the robot and the humans. The planned
trajectories for humans can be seen as predictions, and for a
given human i, the trajectory, Γ(sti, t), can be obtained as:

di = (sti − st−1
i )

pti = sti + di(tk − t),

tk ∈ {t+ 1, ..., Tn}
Γ(sti, t) = g(pti, s

t
R, gR,map)

(8)

where pi is the global path, Tn is the prediction time inside
CoHAN, and g represents the optimization result that takes
robot’s goal, gR and map data along with position data.
Finally, the prediction for human i is obtained by sampling
the trajectory, Γ(sti, t), at the right time using a function κ as
follows:

f(st−h:t
R , st−h:t

1:n ,Wobs)
t′

i = κ(Γ(sti, t), t
′),

t′ ∈ {t+ 1, ..., T}
(9)

Although the workspace used in the study has a boundary,
none of the existing prediction models are explicitly boundary
aware. To prevent the predictions from crossing into obstacles,
we truncate all predictions at the edges of the workspace by
replacing all out-of-bounds predicted states with the latest state
in the prediction still inside.

III. STUDY DESIGN

In order to evaluate the suite of algorithms from the pre-
vious section, we are running a within-subjects study (IRB
HUM00259961) deploying the algorithms in a close-quarters
collaborative assembly environment. Each experiment has two
participants, who work together in a shared space to construct
a set of towers, while the robot navigates the workspace
alongside them. An identical setup is instantiated in two labs
(University of Michigan and LAAS-CNRS) with the singular
difference between the two being the robot platform used (the
Hello Robot Stretch 2, and Willow Garage PR2, respectively).
We completed 20 sessions at each site, resulting in a total of
80 participants, recruited from University students. We aim to
compare the results in the two settings to investigate whether
the robot embodiment affects the results.

Workspace Setup: We designed a workspace consisting
of a 3.5 × 3.5m square, with six workstations positioned at
the perimeter of the space. Two stations at the bottom of the

3.5m

3.
5m

Fig. 2: Experimental setup. Each participant is responsible for two colors
of towers (red and green or yellow and blue), while the robot traverses the
workspace between stations. The ordering is fixed so the green and yellow
towers are completed before the red and blue.

workspace each have two color-coded tower assembly areas
(resulting in four distinct colors), each of which begins with
one small and one large block already placed, on top of which
participants complete two towers. Each of the remaining four
stations have piles of ten bricks, five large and five small,
corresponding to a single colored assembly station. The setup
is visualized in Fig. 2.

Participant Tasks: Participants are tasked with constructing
four towers each, corresponding to large and small towers for
two colors. The participants are instructed to walk naturally,
and complete each tower one block at a time, meaning each
of them had to traverse the workspace 40 times to complete
a single trial. To ensure participants maintained a consistent
strategy regarding the order of tower completion, they were
instructed to complete the towers in a fixed order (again
visualized in Fig. 2). Participants begin at the bottom of the
workspace by standing in front of the two assembly stations,
and the task is considered complete when they have returned
to their starting positions.

Robot Task: Over the course of a single trial, the robot
navigates between the stations in a fixed order, running one
of the tested algorithms. The order was randomly generated
before experiments began, with the constraint that the robot’s
previous and next goals are always on opposite sides of
the workspace. The robot continues to navigate until both
participants have returned to their starting positions, at which
point the robot is stopped in place. Participants are specifically
told that the robot is also part of their team, and that its task
is to supervise progress of the assembly, with the specific goal
of visiting as many workstations as possible.

Algorithm Implementation Details: We instantiate the
control algorithm from section II using a Model Predictive
Path Integral (MPPI) Controller [11, 28]. With a GPU par-



allelized implementation, the controller runs at 50 HZ with
a history of h = 8, horizon of T = 12, ∆t of 0.4s, and
500 rollouts. HST and CoHAN run at slower frequencies (20
HZ and 8 HZ respectively) and thus asynchronously update
the trajectory predictions used in the controller. For the HST,
we use a checkpoint trained on the ETH/UCY dataset which
predicts m = 20 modes.

Metrics: Based on literature [4, 5, 16], we use the following
performance metrics. We also note that participants refers to
the recruited human subjects, and does not include the robot:

• Participant Task Completion Time: The average amount
of time for each participant to complete their task, used
to measure participant task completion efficiency.

• Participant path irregularity [7]: The amount
of unnecessary turning per unit path length
for participants, measured in rad

m , calculated as∑
Path

Rotation−Min. rotation needed
Path length . Used as a proxy

for participant workload.
• Participant acceleration: The average acceleration for

each participant. Used as a proxy for user comfort.
We also introduce a new metric, Team average goals per
second, which captures the efficiency of the entire team,
including the robot. The inclusion of the robot is particularly
important because measuring productivity with respect to only
the humans admits a trivial solution in which the robot simply
moves to a corner of the workspace and does not actually move
between goals, thus minimizing its intrusion but at the expense
of completing its own task. An ideal algorithm will not be
disruptive and will still complete its own task effectively.

Surveys: We use two surveys to obtain user impressions:
• Robot Social Attributes Scale (RoSAS) [1]: A scale con-

taining 18 questions measuring impressions of discom-
fort, competence, and warmth. We specifically use the
six questions measuring discomfort.

• NASA Task-Load Index (NASA TLX) [8]: A survey for
assessing the physical and cognitive load on users. We
use all questions on the original 21 point scale.

Hypotheses. We expect that as the accuracy of the motion
predictions increase, the robot will navigate more effectively,
thus improving task completion and user perceptions. Ad-
ditionally, we expect that the more imposing frame of the
PR2 will be less comfortable for participants. Based on these
expectations, We formulate the following hypotheses:

H1: Using socially aware navigation algorithms results in
improved working conditions and outcomes.

• 1a) Socially aware algorithms have higher team average
goals per second than non-social algorithms.

• 1b) Socially aware algorithms are associated with lower
perceived workload on users than non-social algorithms,
as measured by the NASA TLX survey and users’ average
path irregularities.

• 1c) Socially aware algorithms are associated with in-
creased user perceptions of comfort than non-social al-
gorithms, as measured by the RoSAS survey and users’
average accelerations.

H2: Using prediction models with lower average displacement
error (ADE) results in improved working conditions and

outcomes.
• 1a) Decreasing prediction model ADE is associated with

decreasing task completion times.
• 1b) Decreasing prediction model ADE is associated with

decreasing perceived workload on users, as measured
by the NASA TLX survey and users’ average path
irregularities.

• 1c) Decreasing prediction model ADE is associated with
increased user perceptions of comfort than non-social
algorithms, as measured by the RoSAS survey and users’
average accelerations.

H3: A larger robot embodiment is associated with decreased
perceptions of user comfort than a smaller embodiment, as
measured by the RoSAS survey and users’ average accelera-
tions.

IV. RESULTS AND DISCUSSION

The study is still in progress at both sites. We intend to
include data analysis, including the support level for each
hypothesis.

Thus far, members of the study team have qualitatively
observed that, as anticipated, No Model causes uncomfortable
interactions by blindly moving towards participants. The ef-
fects are most noticeable when they are at stations and are
occupied with their task, and thus unable to perceive the
robot moving into their space until it is very close. The Static
model has generally caused overly-conservative behavior, due
to the robot often incorrectly predicting that its path will be
blocked. CV, CoHAN, and HST have produced more balanced
results, with efficiency closer to No Model, while still taking
actions that reduce disruption of the participants. Additionally,
we observe differences in mean discomfort levels between
sites, which indicates the platform difference may be causing
differences in user experience. Ultimately, we aim to provide
a finer-grained analysis of the predictions and navigation
behaviors produced by each method, and relate them to our
collected objective and subjective metrics.

While social robot navigation is often cited as a downstream
use-case for human motion prediction models, its integration,
and particularly the integration’s effects on humans the robot
interacts with, are not yet well understood. This study will
delve into the benefits and limitations of leveraging learning
and model-based trajectory prediction methods in an embodied
setting, where the trajectories are not passively observed, but
instead are used actively for decision making by an agent in the
scenario. Furthermore, the two-site experiment will allow us
to analyze the effects of the embodiment of the agent itself.
Finally, while recent work has begun to take an interest in
constrained, task-driven settings [19, 22, 29], most existing
large-scale datasets and methods focus on open spaces. This
study will provide insight into whether these approaches can
be performant in closer-quarters, contextualized settings.
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