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Abstract— Capturing and reconstructing a human actor’s
motion is important for filmmaking and gaming. Currently,
motion capture systems with static cameras are used for
pixel-level, high-fidelity reconstructions. Such setups are costly,
require installation and calibration and, more importantly,
confine the user to a predetermined area. In this work, we
present a drone-based motion capture system that can alleviate
these limitations. We present a complete system implementa-
tion and study view planning, which is critical for achieving
high-quality reconstructions. The main challenge is that the
reconstruction algorithms are computationally costly, but views
need to be planned in real time. To address this challenge,
we introduce Pixel-Per-Area (PPA) as a reconstruction qual-
ity proxy and plan views by maximizing the PPA of the
faces of a simple geometric shape representing the actor.
Through experiments in simulation, we show that PPA is
highly correlated with reconstruction quality. We also conduct
real-world experiments showing that our system can produce
dynamic 3D reconstructions of good quality. We discuss how
this view planning algorithm can be extended with predicted
future human poses on human surface representation. We
share our code for the simulation experiments in the link:
https://github.com/Qingyuan-Jiang/view planning 3dhuman.

I. INTRODUCTION

Capturing a human actor’s motion with fine details is
essential due to its applications in virtual reality and related
metaverse applications. However, obtaining such high-fidelity
reconstructions [1], [2] remains a challenging problem due to
the actor’s motion. Recently developed multi-camera systems
can generate reconstructions at the sub-pixel level of hand
details or facial gestures [3], [4]. The primary limitation of
these systems is that they rely on stationary, pre-calibrated
cameras, which confine the user to a motion capture area.
In this work, we tackle the challenge of acquiring images
with drones for the high-fidelity reconstruction of a dynamic
human actor. We focus on the view planning strategy to
improve the reconstruction quality.

There are many technical challenges in designing such a
view planning algorithm when the actor is dynamic: The
planning space is heavily enlarged due to the uncertainty
of the actor’s movement. Also, the target surface keeps
changing; in contrast, existing works on high-fidelity human
3D reconstruction are computationally costly and slow. There
is no prior information on the human surface and no closed-
form objective functions to plan in real time.

Therefore, we present a view planning strategy that ad-
dresses these challenges (Fig. 1). We 1) present a new
objective function, Pixels-Per-Area (PPA), to measure the
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Fig. 1. Capturing images with a flying camera for the high-fidelity
reconstruction of a dynamic actor. We build a drone system to capture a
dynamic actor’s high-fidelity 3D reconstruction and study the view planning
strategy for better reconstruction quality.

fidelity of 3D reconstruction for a single 3D patch. 2) We
represent the human out-surface as a set of 3D patches and
propose the view planning algorithm that optimizes PPA
proxy based on the set. We investigate our view planning
performance in different fidelity: from highest fidelity, where
each patch is a triangle prism from the observed partial mesh,
to the simplest, a cuboid with five faces.

Our contributions can be summarized as follows.
• We propose to use the Pixels-Per-Area (PPA) function

as a proxy for reconstruction quality. We formulate the
view planning algorithm as the optimization problem of
maximizing the PPA proxy.

• Through experiments, we show that PPA proxy is highly
correlated with 3D reconstruction quality. Meanwhile,
we show the impact of the human representation in
different fidelity on the view planning algorithm per-
formance.

• We built a drone system that can produce high-fidelity
3D reconstructions of a dynamic, moving human actor.

II. RELATED WORK

Reconstruction with flying cameras has received signifi-
cant attention. Many works aim for a dynamic human target
and a 3D skeleton pose reconstruction. Meanwhile, other
works build high-fidelity reconstructions for large-scale static
objects like buildings.

A. Human pose reconstruction with drones

There is an increasing amount of work on controlling
drones to extract human skeleton poses actively, with the
purpose of better pose reconstruction quality [5]–[7] or better
artistic meaning [8], [9]. On the other hand, some studies

https://github.com/Qingyuan-Jiang/view_planning_3dhuman


extend this setting to multiple drones [10]–[15]. Compared
to these works, our system is designed for high-fidelity
reconstructions beyond skeleton poses by proposing a proxy
for reconstruction quality and using geometric primitives as
intermediate actor models.

B. View planning for high-fidelity 3D reconstruction of static
objects

Researchers also use drones to reconstruct objects in high
fidelity on a large scale, such as static buildings [16]–[19],
landslide [20], orchards [21]–[23], or urban areas [24], [25].
While such UAV systems can produce 3D reconstruction
results for static targets, reconstructing a dynamic object is
intractable because the target’s surface changes across time,
and the Next Best View algorithms do not work in such
cases. In our work, we model the moving human as a set of
observed patches and update them in real time.

III. PROBLEM FORMULATION
In this section, we introduce the representation of the

human surface and formulate the view planning on such
representation as an optimization problem (Fig. 2).

Fig. 2. Formulation. We model the actor as a set of geometric primitives
with surface normals. We would like to find a viewpoint that minimizes the
reconstruction error while maintaining a minimum distance to ensure the
actor’s safety.

A. Representation

We model the actor as a set of patches. A patch is defined
as a planar surface of bounded size, represented with i) a
point at its centroid and ii) a normal vector indicating the
orientation. For example, a triangle from a mesh can be
treated as a patch in the highest resolution.

Suppose we have m-patches from the actor to visit in a
3-dimensional space. Mathematically, we use the geometric
center as its representation point. We use pj ∈ R3 to denote
the position of the point with index j and use nj ∈ R3

to denote the normal vector of the patch. The pose of the
j-th patch is denoted by xj ∈ R6, where xj = (pj ,nj).
The actor is modeled as the set of patches X = {xj}.
Meanwhile, we use xa = (pa,na) to denote the actor’s
pose as a whole. Note that all normal vectors has normalized
length, i.e. ∥nj∥ = 1, ∥na∥ = 1.

We denote the localization estimation of a drone’s pose
as x̂d = (p̂d, n̂d). From the current drone’s pose x̂d, we
estimate the actor as a set of patches. We denote it as Xest =
{x̂j}. Similarly, we have ∥nd∥ = ∥n̂d∥ = ∥n̂j∥ = 1.

B. Pixels-Per-Area (PPA) as reconstruction quality proxy

Because we do not have the ground truth of human patches
xj , we define Pixels-Per-Area (PPA) in this part as a proxy
for the reconstruction quality. We define the Pixels-Per-Area
(PPA) as the projection area in the image plane of a 3D patch
(Fig. 3), which is a function of the drone’s pose xd and the
pose of a patch xj :

ppa (xd,xj) =
cos(α(nd,nj))

d(pd,pj)
(1)

α(nd,nj) defines the acute angle between nj and nd.
d(pd,pj) defines the Euclidean distance between the drone
and the patch given as: cos (α(nd,nj)) =

nd·nj

∥nd∥·∥nj∥ ,
d(pd,pj) = ∥pd − pj∥. As its name implies, the PPA
function describes the pixels occupied in the image plane
by a 3D area. We use PPA as a proxy of the reconstruction
quality, and we will show later in Sec. VI-A the correlation
between PPA values and the reconstruction quality.

Fig. 3. Geometric meaning of the PPA value. We define the PPA value of
a patch as the ratio between the projection area in the image plane (colored
in blue) and the patch’s original area. (colored in red). f : the focal length
of a camera.

C. Formulation

Given an estimation of the drone’s pose x̂d and actor
observation Xest, we would like to compute a new view point
x̂

′

d =
(
p̂

′

d, n̂
′

d

)
in a local area with better reconstruction

quality. Before that, we need to define the safety region and
the maximum step size.

1) Safety regions: To ensure the actor’s safety, we define
a hemispherical space around the actor as the safe region.
We use Rsafe > 0 to denote the radius of the hemispherical
space. The distance between the updated viewpoint and the
actor’s position should always be greater than Rsafe.

2) Maximum step size: To constraint the new viewpoint
close to the current estimation, we define a maximum step
size T , such that ∥p̂′

d − p̂d∥ ≤ T .
3) Formulation: Now that we are ready to formulate the

problem. Given an estimation of camera pose x̂d and an
estimation of the actor model from reconstruction Xest, we
would like to find a new viewpoint x̂

′

d within step size T and
out of safety region, such that the PPA value is maximized.

x̂
′

d = argmax
x̂
′
d

∑
j

ppa
(
x̂

′

d, x̂j

)
s.t. ∥p̂

′

d − p̂d∥ ≤ T , ∥p̂
′

d − pa∥ ≥ Rsafe

(2)



We will solve the formulated problem above with our view
planning module described in Sec. IV.

IV. VIEW PLANNING METHODOLOGY

We make a one-step update on the drone’s pose estimation
by maximizing the summation of PPA values throughout
patches with Eq. 2. To do so, we calculate the gradient
from the Jacobian vector with respect to the drone’s pose
estimation as described in Eq. 3, whose components are
given in Eq. 4 and Eq. 5.

∂

∂x̂d

∑
j

ppa
(
x̂

′

d, x̂j

)
=

∑
j


∂

∂p̂d
ppa

(
x̂

′

d, x̂j

)
∂

∂n̂d
ppa

(
x̂

′

d, x̂j

)
 (3)

∂

∂p̂d

∑
j

ppa
(
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′

d, x̂j

)
= −

∑
j

n̂d · n̂j

∥p̂d − p̂j∥3
· (p̂d − p̂j)

(4)
∂

∂n̂d

∑
j

ppa
(
x̂

′

d, x̂j

)
=

∑
j

n̂j − (n̂d · n̂j) · n̂d

∥p̂d − p̂j∥
(5)

By calculating the Jacobian vector, we obtain the gradient
of PPA values with respect to the drone’s poses and update
our drone’s pose by following its direction and moving by a
step size ∆T in such a way that the constraints described in
Eq. 2 are satisfied.

x̂
′

d = x̂d +
∂

∂x̂d

∑
j

ppa
(
x̂

′

d, x̂j

)
·∆T

s.t. ∥p̂
′

d − p̂d∥ ≤ T , ∥p̂
′

d − pa∥ ≥ Rsafe

(6)

V. SYSTEM DESIGN

We built the drone system to validate our view planning
in a real system. Besides our online view planning algorithm
for high fidelity reconstruction in Sec. IV, the system also
includes the capabilities of i) Online actor localization and
heading direction estimation, ii) offline reconstruction with
the Iterative Closest Point (ICP) method. We assume the
actor is on the ground and localize its 2D pose following
[26] with a multiple-layer perception (MLP) as the heading
direction estimator. Then, we build human patches based on
the 2D pose and plan views as described in Sec. IV. We
use RGB-D images from onboard cameras to produce high-
fidelity reconstruction and calibrated views with the Iterative
Closest Point method. We use DJI M100 as our working
drone, with Jetson TX1 as our computing unit and Realsense
D435 (15Hz) as our onboard camera.

VI. EXPERIMENTS

We study the effectiveness of our system through the
following questions:

1) How does the PPA function perform as a proxy for the
reconstruction quality?

2) How is the reconstruction quality improved by opti-
mizing the PPA metric?

We conduct both simulation and real-world experiments
using Microsoft Airsim [27], Unreal Engine [28], and Mix-
amo animations [29] for evaluating reconstructions.

A. PPA as the reconstruction quality proxy

In this part, we show the correlation between PPA values,
reconstruction quality, and validity using geometry primitives
to represent a human actor.

1) Experiment setup in the simulation.: We obtain ground
truth from Airsim using a mesh representation. Triangles
and surface normals are used as patches xj , with viewpoints
sampled in spherical coordinates. PPA values are computed
per view. We also calculate the corresponding PPA values if
we model the actor as a cuboid, i.e., five faces as patches.
We use the following reconstruction quality.

i) Coverage of triangles. We project each pixel from
the sampled view into 3D space with depth information.
We define a triangle as visible if any point from the view
falls within its prism volume (height fixed at 1cm). We
define coverage as the visible triangle percentage. ii) Average
Pixels-Per-Triangle. We also use the average number of
pixels on a mesh triangle as our evaluation metric.

Fig. 4. Correlation between PPA values and the reconstruction quality.
We show the correlation between PPA values and reconstruction quality
and validity to use geometry primitives as the actor model. X-axis for both
figures: PPA values on each human mesh triangle. Y-axis (top): metrics for
reconstruction quality, average pixels per patch in blue dots, coverage ratio
in red triangle. Y-axis (bottom): PPA values based on the cuboid model.
Blue dots are the PPA values on each mesh triangle and hence on y = x
diagonal. The corresponding PPA values on the cuboid faces are connected
to the green dots.

2) Results: Quantitative results are shown in Fig 4. Each
dot is a sampled view. In the top figure of Fig. 4, we



TABLE I
RECONSTRUCTION RESULTS FROM VIEW PLANNING ALGORITHMS.

Modules No Plan Greedy PPA Cuboid PPA Mesh Enum. Coverage Enum. CD.
Coverage [%]↑ 12.6 12.8 12.9 13.7 14.2 13.8
CD [mm] ↓ 45.36 44.72 44.65 44.24 43.65 43.10
Coverage (noise) [%]↑ 12.6 12.9 13.0 13.6 14.1 13.6
CD (noise) [mm] ↓ 45.36 45.25 45.08 44.46 43.80 43.13

show a monotonic relationship between PPA and both quality
metrics. The bottom figure indicates that cuboid and mesh-
based PPA values are comparable, especially in areas with a
planar surface (e.g., chest/back), making cuboids a reason-
able simplification for planning.

B. PPA as the view planning strategy

In this part, we compare reconstruction quality using PPA-
optimized views against baseline planning strategies.

1) Metric: We use triangle coverage and Chamfer Dis-
tance (CD) [30] as our evaluation metrics. Chamfer dis-
tance in the forward direction computes the accuracy of
the reconstruction, whereas, in the backward direction, it
models the coverage of the ground truth point cloud by the
reconstruction. We report the mean of the two directions as
the total reconstruction error. All numbers are reported in
millimeters.

2) Baselines: We evaluate reconstruction quality from
four methods as shown in Fig. 5: 1) no planning; 2) greedy
planning (closest next view); 3) planning on PPA with a
cuboid human model; 4) planning on PPA with observed
mesh; 5) We also enumerate the viewing quality metrics in
the local area and use them as our upper bound, which can
not be reached during actual flights since we can not obtain
the mesh ground truth of the actor surface. In practice, we
set the safe radius Rsafe = 8m and step size T = 1.0m.

Fig. 5. Methods and baselines We compare our planning strategy with
other baselines on the reconstruction results. From left to right, we show
the view planning methods, including PPA based on the mesh, PPA based
on a cuboid, greedy method, and enumeration on viewing quality.

3) Analysis: From the results in Table I, we show that
optimizing our PPA optimization improves both coverage and
accuracy. Meanwhile, mesh-based PPA gives better results
than cuboid-based, though cuboid is more computationally
efficient. Besides, we test the sensitivity of the view planning
algorithm when the error of human 2D pose is included. With
added Gaussian noise (µ = 0m, σ = 0.5m) to actor pose,
PPA-based methods remain robust, as shown in Table I.

4) Real-world Results: We also show qualitative results
from the real-world experiments in Fig. 6, where we visualize
the reconstructed dynamics of the actor walking in the 3D
world. Real-world reconstructions confirm the effectiveness

of PPA-based view planning. More results are included in
the supplementary video.

Fig. 6. Reconstruction results from real drone setup. We show our
reconstructed human actor from the real drone in ROS Rviz. Green lines
are the calibrated camera path. Results are shown as a point cloud in the
middle. We plot the world and camera frame on the mid-bottom and top-left
of the image.

VII. HUMAN MOTION PREDICTION EXTENSION

In the section above, we solve the view planning problem
by maximizing PPA values over a set of patches representing
the human surface, observed in real time. One limitation of
the algorithm is that it ‘responds’ to human motion and,
therefore, tracks the human passively. Our recent work [31]
predicts long-term human skeleton poses from past poses
and the surrounding environment. As an extension of this
view planning algorithm, we would like to model human
patches considering future poses. Our minimization process
will remain similar but have a time dimension and can be
solved by dynamic programming for an optimal solution
or by other methods for a sub-optimal solution. This way,
we can actively plan future views with predictions as prior
knowledge.

VIII. CONCLUSION

This paper presented a view planning method for capturing
high-fidelity 3D reconstructions of a dynamic actor based
on a Pixels-Per-Area (PPA) function, used as a proxy for
reconstruction quality. We modeled the actor surface as a
set of 3D patches and experimented with different geometry
representations. Experiments in simulation validated the cor-
relation between PPA and reconstruction quality, showing
improved reconstruction results with our proposed view-
planning method. We also built a real-world drone system
and demonstrated successful reconstructions in a real set-
ting. In future work, we aim to extend the view planning
algorithm by leveraging human motion prediction results and
considering future surfaces in the optimization process.
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