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Abstract— The design of Autonomous Vehicles (AVs) have
made significant progress through imitation of large scale open
source datasets. Intuitively, AVs learn not only to act based
on the current state, but also to anticipate future behavior—a
process known as planning. Similarly, they predict the future
actions of surrounding vehicles, which we refer to as reasoning.
In this paper, we investigate the emergence of planning and
reasoning abilities in transformer-based imitation learning (IL)
where as a proxy we investigate the representations and predic-
tive capabilities of the IL model with respect to other vehicles. In
particular, we investigate whether it is a necessary precondition
for internal layers to learn to predict the trajectories of other
drivers in the scene. To evaluate this, we utilize linear probing
for the future position of the ego vehicles and the future position
of other vehicles. Our results show that planning converges at
some period, but reasoning ability is gradually increasing as
the dataset size increases. For propagation of planning and
reasoning information, there is no difference in dataset size,
but all models lose more information in the further future.

I. INTRODUCTION

With the release of diverse open source datasets [1], [2]
and GPU-accelerated simulation environments [3], [4], data-
driven autonomous driving models have made significant
strides in areas such as trajectory prediction [5], trajectory
generation [6], and decision making [7]. In particular, data-
driven imitation learning (IL) models aim to learn human
driving behavior, including planning and reasoning abilities.

However, previous studies remain limited as to whether the
IL truly possesses planning ability and the ability to reason
with other vehicles. Basically, in a multi-agent autonomous
driving scenario where multiple vehicles interact, the IL
model with planning ability should be able to drive effec-
tively regardless of the presence of other vehicles on the same
road. It should efficiently reason about other vehicles based
on their presence and, finally, modify its initial planning
based on that reasoning.

Moreover, it remains underexplored whether planning and
reasoning abilities follow data scaling laws with respect to
dataset size and model capacity, even in large-scale open-
source datasets. Understanding what abilities agents learn as
the dataset grows is a critical question when training data-
driven autonomous driving models.
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Thus, a key question arises: Do current IL models possess
these capabilities? Furthermore, understanding at what scale
of the dataset these abilities emerge is crucial to compre-
hending the generalization gap of the model. In this paper,
we validate the IL models’ planning and reasoning abilities
through a key research question: How does the IL model
learn planning ability and reasoning ability as the dataset
size increases? To evaluate this, we perform linear probing
methods [8] and dataset scaling experiments [9]. First, we
train models on datasets of varying sizes and evaluate their
performance in simulation. We measure planning-related
metrics (goal rate, goal progress ratio) and reasoning-related
metric (collision rate). Next, we conduct a vehicle padding
experiment, where surrounding vehicles are randomly added
with a fixed probability. This evaluates how well the IL
model generalizes its planning performance regardless of the
presence of other vehicles. Finally, we apply linear probing, a
common approach in interpretable deep learning. We extract
representations from both early and later layers of the IL
model and assess how well they capture planning and rea-
soning capabilities. For comparison, we also perform linear
probing directly on the raw input. From our experimental
results, we observe the following:

• With smaller datasets, the model primarily learns
planning-related abilities; as the dataset size increases,
it gradually acquires reasoning-related abilities.

• The accuracy of both linear probing of ego-autonomous
vehicles (AVs) future positions and linear probing of
other vehicles’ future positions follow a similar trend
with dataset scaling experiments.

• Regardless of the dataset size, the model has a represen-
tation of planning and reasoning up to the final layer,
but the model loses further future information.

II. RELATED WORK

A. Planning in Autonomous Driving
Data-driven autonomous driving has advanced with

datasets such as nuScenes [2], Waymo Open Motion Dataset
(WOMD) [1], and Argoverse [10], along with simulators like
Waymax [4], GPUDrive [3], and Nocturne [11]. Based on
these resources, various models have emerged, ranging from
simple behavior cloning models [11] to trajectory prediction
algorithms like Wayformer [5] and MultiPath [12]. These
models share the common characteristic of making accurate
planning predictions while utilizing information about sur-
rounding vehicles. However, research analyzing how these
models specifically perform planning and reasoning about
other vehicles remains limited.



Fig. 1. Power law relationships for simulation results: Simulation results for IL with data scaling. We evaluated the goal and collision metrics. Dashed
lines are power-law fits and r is correlation coefficient.

B. Interpretability in Deep Learning

Interpretable deep learning is an approach that transforms
the representations of neural networks into an interpretable
form to analyze their internal representations. Linear probing
is a method used to verify how much information a trained
neural network has learned from its original dataset by em-
ploying a probing dataset and a linear classifier [8]. Recently,
the study [13] explored the planning ability of model-free
reinforcement learning (RL) using both linear probing and
concept-based interpretability [14]. This research analyzed
whether the Deep Repeated ConvLSTM [15] agent possesses
planning ability through linear probing and intervention
methods. Our research follows a similar approach but differs
in that we focus on multi-agent settings so that our probing
targets not only the ego agent’s planning ability but also
its reasoning ability regarding other vehicles.

C. Data Scaling Laws

With the emergence of large foundation models, scaling
laws have become a key research area in domains such as
language [9], vision [16], and robotics [17]. In general, scal-
ing laws analyze how model performance varies with dataset
size, model capacity, and computing resources, especially
for transformer-based architecture. This concept has also re-
cently been extended to the field of autonomous driving [18].
Similarly, we investigate how the performance of models
changes with varying dataset sizes in autonomous driving.
However, unlike previous work that focuses primarily on
overall performance metrics, we take a distinct approach by
analyzing how planning and reasoning capabilities evolve
through the lens of interpretability.

III. APPROACHES

In this section, we evaluate the reasoning and planning
abilities of a transformer-based IL model. We begin with a
data scaling experiment to examine how goal achievement
and collision rates vary with dataset size (Section III-B).
To assess planning ability, we introduce randomly padded
trajectories of other active AVs and analyze how the goal
related metrics change with varying dataset sizes (Section
III-C). Lastly, we focus on two key questions: 1) Does
the IL model possess representational capacity for future
information (planning and reasoning)? and 2) Are these
representations preserved and propagated to the final layer?

To evaluate this, we perform linear probing on the ego AV’s
future positions to determine whether the model’s internal
representations capture planning behavior (Section III-D).
For reasoning ability, we conduct linear probing on the future
positions of surrounding AVs to assess whether the model
understands and encodes other vehicles’ behavior (Section
III-E).

A. Experimental Setup

Dataset. We train our model using the WOMD. The
dataset consists of over 100K driving scenes, each containing
9 seconds of trajectories sampled at 10 Hz. Each observation
includes information about the ego vehicle, surrounding
objects, and the map. As action labels are not available in the
dataset, we derive them using a delta dynamics model. The
data is structured such that each sample contains the past 5
steps as input and the action at the current timestep as the
prediction target.

Imitation Learning. For evaluating our method, we em-
ployed the transformer-based IL model. Basically, we used
the early fusion attention first for encoding layers and self-
attention vehicles and road objects separately. Then, we used
the cross-attention for using other vehicles’ features and
road object features related to ego AV. Lastly, we used the
gaussian mixture model (GMM) for extracting actions (∆x,
∆y, and ∆yaw).

B. IL with Different Dataset Size

TABLE I
DRIVING PERFORMANCE METRICS FOR DIFFERENT DATASET SCALES.

Num Scenes Dataset Goal Rate Goal Progress Ratio Off-Road Veh-Coll

100 Train 0.565 ± 0.116 0.785 ± 0.076 0.155 ± 0.048 0.120 ± 0.038
Test 0.510 ± 0.039 0.750 ± 0.042 0.225 ± 0.053 0.190 ± 0.035

500 Train 0.648 ± 0.034 0.800 ± 0.044 0.189 ± 0.055 0.134 ± 0.029
Test 0.617 ± 0.042 0.789 ± 0.042 0.205 ± 0.041 0.164 ± 0.025

1000 Train 0.707 ± 0.070 0.858 ± 0.036 0.132 ± 0.021 0.117 ± 0.014
Test 0.712 ± 0.057∗ 0.858 ± 0.031∗ 0.144 ± 0.014 0.125 ± 0.006

5000 Train 0.697 ± 0.103 0.837 ± 0.052 0.127 ± 0.006 0.106 ± 0.014
Test 0.706 ± 0.096 0.843 ± 0.048 0.112 ± 0.008 0.094 ± 0.012

10000 Train 0.684 ± 0.036 0.841 ± 0.020 0.116 ± 0.010 0.082 ± 0.008
Test 0.688 ± 0.051 0.843 ± 0.022 0.106 ± 0.010∗ 0.069 ± 0.008∗

We trained models using four different random
seeds while gradually increasing the dataset size to
{100, 500, 1000, 5000, 10000} scenes. After training, we
evaluated the models in the GPUDrive simulator [3] on
both train and test scenes using four key metrics: goal rate,
vehicle collision rate (Veh-Coll), off-road rate (Off-Road),



Fig. 2. Performance metrics with changing partner alive ratio: We tested the IL model in GPUDrive simulation by padding the other vehicles with
ratio {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. For the test set, we evaluated 1,000 scenes that are unseen in the training IL model.

Fig. 3. Performance metrics with ego-linear probing: Light colors are raw-input probing and darker colors are IL probing (earlier layer and late layer)
with error bars of standard deviation across different seeds. For convenience, we decided to call the linear probing of the IL model an early LP. Similarly,
the linear probing of the IL model is called a late LP. Green color is future position accuracy and purple color is F1 score of future position. We chose
the future steps for {10, 20, 30, 40} which is 1 to 4 seconds ahead. The red text indicates the difference between the raw-input probing and the best IL
probing model (early LP and late LP). The blue text indicates the difference between early LP and late LP (early LP - late LP).

and goal progress rate (the distance from goal at final
timestep), as shown in Table I. The asterisk indicates
statistically significant improvement over others. The results
show a consistent decrease in collision rates up to 10,000
scenes in test scenes, indicating improved reasoning about
surrounding agents. In contrast, the goal progress rate
converges to around 85% with 1,000 scenes and remains
stable thereafter.

We also performed linear model fitting on these metrics,
as illustrated in Figure 1. The collision-related metrics (Veh-
Coll and Off-Road) exhibit a strong correlation with dataset
size, suggesting a potential power-law relationship. In com-
parison, goal-related metrics show weaker correlations, likely
due to early convergence after 1,000 scenes.

C. Randomly Padding Other Vehicles

If the IL model possesses planning abilities, it should be
able to generate a successful trajectory to the goal even in the
absence of other vehicles in the scene. Furthermore, as its

reasoning ability improves, it should consistently generate
effective plans regardless of the number of surrounding
vehicles. To evaluate this, we conducted experiments by
randomly padding the number of active vehicles on the road
with values from {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, as shown in
Figure 2.

The results revealed a notable performance gap between
scenes with and without other vehicles. Although the IL
model trained on 500 scenes achieved a relatively high goal
rate, its goal progress ratio remained lower in the 0.0 setting
compared to scenes with vehicles (0.2–1.0). Overall, these
findings suggest that the IL model still struggles with plan-
ning when operating without the presence of other vehicles.

D. Linear Probing for Ego AV Planning

To gain a deeper understanding of the model’s planning
ability, we conducted a linear probing experiment on future
position prediction. The ground truth was set as the ego



Fig. 4. Performance metrics with other-linear probing: Light colors are raw-input probing and darker colors are IL probing(earlier layer and late layer)
with error bars of standard deviation across different seeds. Green color is future position accuracy and purple color is F1 score of future position. We
chose the future steps for {10, 20, 30, 40} which is 1 to 4 seconds ahead. The red text indicates the difference between the raw-input probing and the
best IL probing model (early LP and late LP). The blue text indicates the difference between early LP and late LP (early LP - late LP).

vehicle’s positions 1 to 4 seconds ahead (corresponding to 10
to 40 steps), and the positions were discretized into 64 labels
(8 along the x-axis and 8 along the y-axis). We trained linear
classifiers on the raw input, as well as on representations
from both early and late attention layers, and evaluated
performance using accuracy and F1 score to account for data
imbalance. For hyperparameter, linear classifiers were trained
for 20 epochs with a batch size of 256.

As shown in Figure 3, the IL model consistently demon-
strated strong representational power for the ego’s future
trajectories, achieving at least 40% accuracy across all future
time steps. Furthermore, the performance gap between raw
input probing model and IL probing model has been reduced,
suggesting that the IL model has converged in terms of plan-
ning capabilities. When comparing early and late attention
layers, the overall performance with increasing data was
similar, but information loss has occurred further into the
future.

E. Linear Probing for Other Vehicles Reasoning

To test reasoning ability, we followed the same probing
method and hyperparameter as for the ego vehicle, setting
the ground truth as the other vehicles’ position from 1 to
4 seconds ahead (10 to 40 steps). The results are shown in
the Figure 4. To evaluate the model’s reasoning ability, we
applied the same linear probing method used for the ego
vehicle, setting the ground truth as the future positions of
other vehicles from 1 to 4 seconds ahead (10 to 40 steps).
For raw-input model, we used the raw input features of other
vehicles combined with ego vehicle information. The results
are presented in Figure 4.

As shown in the figure, the linear probing performance
improves as the dataset size increases, and the gap between
the raw-input probing model and the IL probing model

results becomes more pronounced. This suggests that the
IL model gradually learns to reason about other agents,
consistent with the trend observed in Table I. However,
overall accuracy is still low, with F1 scores lower than
20%. Similar with ego-linear probing, other vehicle probing
results have shown that the IL model throws up the reasoning
information as the future step increases.

IV. CONCLUSION

In this work, we analyzed how the planning and reasoning
abilities of transformer-based IL models in autonomous
driving evolve with increasing dataset scale. Unlike prior
studies on data scaling, we leveraged linear probing to gain
deeper insights into how these abilities are represented across
model layers. Our experiments revealed that with smaller
datasets, the model first learns planning-related ability, and
as the dataset increases, it gradually improves its reasoning
ability. In the case of information propagation, planning and
reasoning representation is keeping propagated, but losing as
the predicting further future information.

For future work, although we used 4 million samples,
this represents only 10% of the full WOMD dataset, and
scaling to the full dataset is needed for comprehensive
validation. Furthermore, effective planning should involve
not only generating initial plans, but also adapting them
based on the predicted trajectories of surrounding agents.
We aim to explore this through intervention-based methods
in future research. Lastly, reasoning ability is not simply
evaluated with uniform accuracy about other vehicles since
there are affective others and not.
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