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Abstract— We present a comparative analysis of two Bayesian
approaches to representing internal models in human driver
steering control: Gaussian Processes (GPs) and Bayesian Neural
Networks (BNNs). We apply these methods within a recently
proposed driver model that combines an uncertainty-aware
learned internal model of the vehicle dynamics with a Model
Predictive Control (MPC) framework, enabling representation
of a range of driver behaviors. The GP and BNN approaches
are evaluated with a focus on their ability to represent observed
human behaviors, along with computational efficiency, predic-
tion accuracy, and robustness. The GP model is shown to be
particularly effective and robust in low-data regimes, providing
interpretable uncertainty estimates leading to control that aligns
well with human behavior observed during repeated driving
maneuvers. BNNs, while computationally intensive to train,
offer superior scalability and flexibility when dealing with high-
dimensional systems or more complex and nonlinear dynamics,
though predictions and learning are less interpretable.

I. INTRODUCTION

Predicting accurately how human drivers may behave in a
given circumstance is of high value when developing driver
aids and autonomous vehicles that will interact with human
drivers and other human driven vehicles on the road.

This paper explores the predictive modeling of steer-
ing behaviors, particularly as evaluated during demanding
maneuvers involving nonlinear vehicle dynamics. Modeling
human drivers’ steering control is an area of active research,
in which focus is shifting towards capturing nuances of
human perception, adaptation, and learning to refine in-
dividual driver predictions [1]. Recent advances allow for
more accurately modeling individual drivers’ styles and for
tracking evolution of driving behavior over time.

It is widely believed that when controlling a familiar
system, humans rely on what they have learned of the system
from experience to predict how it will respond to inputs, with
this predictive model referred to as the internal model [2]. In
computational driver modeling, the internal model represents
the driver’s understanding of the vehicle’s behavior, and their
expectation of the vehicle’s response to inputs.

Recent driver models have used optimal control frame-
works such as Model Predictive Control (MPC), that min-
imize the cost associated with predicted future states and
control based on the internal model predictions [3], [4], [5].
Traditionally, the internal model has often been assumed
to be accurate and fixed. However, to accurately model
real drivers, internal models need to adapt, learn and track
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confidence in understanding, as humans do. This is espe-
cially apparent under challenging unfamiliar or nonlinear
conditions [6], [7], [4], [5]. The cost applied to the future
states aims to replicate the human incentives to proceed in
the desired direction and avoid obstacles. Additional cost
function elements are included to capture other aspects that
human drivers seek or avoid, such as penalties on control
actions: steering angle, angular velocity, angular acceleration,
or on steering torque which relate to control effort and
to the biological incentive to minimize the metabolic cost
of implementing control actions. In [4], an additional cost
on the uncertainty in predictions that drivers would have
in underexplored or unpredictable regions of the vehicle
dynamics was considered — it seems likely that humans
would innately learn to include this when selecting con-
trol actions. In testing, it was shown that by varying this
cost on predictive variance, different observed human driver
behaviors could be replicated: cautiousness, where drivers
are averse to uncertainty, with a high cost on variance; and
adventurousness, where drivers are exploratory and unafraid
of uncertainty, with a low cost [4].

Being able to model different driving behaviors like
this has significant appeal; however making these variance
predictions and optimizing over them can come at a high
computational cost.

Two prominent Bayesian approaches to uncertainty-aware
modeling of this internal knowledge are:

• Gaussian Processes (GPs) — Nonparametric models
that directly estimate a distribution over functions, pro-
viding both predictive means and variances [8].

• Bayesian Neural Networks (BNNs) — Neural net-
works with distributions over weights that yield pre-
dictions with uncertainty estimates [9].

In previous work [4], [5], a GP model was used, building
on the cautious nonlinear MPC approach using GPs de-
veloped by Hewing et al. in [10]; but including variance
in the MPC cost to provide behavioral incentives, rather
than as a probabilistic constraint, and with more limited
assumed system knowledge. Many other works demonstrate
various approaches to control using neural networks (NNs)
[11], [12], [13]. This report provides a comparative analysis
between these approaches, focusing primarily on the ability
to model human driver action, and addressing computational
efficiency and prediction accuracy.

II. DRIVER MODEL OVERVIEW

Internal models will be compared within a driver model
architecture as introduced and described fully in [5]. The



driver model contains a learned internal model of the vehicle
dynamics, trained on a store of prior vehicle responses, which
predicts future states of the vehicle given current observa-
tions and planned control inputs. Nonlinear MPC is used
to optimise the steering control inputs over the prediction
horizon. The cost function includes penalty terms on path
following error (lateral and yaw displacement), control effort
(first and second time-derivatives of steering angle) and on
the variance of internal model predictions. State estimation is
performed using an extended Kalman filter (EKF) based on
observations and the internal model predictions. This model
has been shown to be capable of representing a range of
individual driving styles, behaviors and driver skill levels
[4]. Particular focus was directed to replicating cautious and
adventurous control styles, where cautious control was iden-
tified as control where the driver avoids situations with high
internal model prediction variance and can be observed as
gentle low magnitude early control inputs, where magnitude
can increase over time when the driver’s region of high
confidence in predictions grows as they learn the dynamics,
and achieved in the driver model with a high penalty on
prediction variance in the cost function. Adventurous control
is the opposite, observed as variable, large magnitude, and
exploratory early control inputs.

Previous work with this driver model exclusively used GPs
for the learned internal model with comparison made to an
accurate, fixed internal model.

A different software implementation is used here to that
described previously, with CasADi [14] as a symbolic frame-
work to solve the constrained nonlinear MPC optimization
problem. PyTorch [15] is used for GPU acceleration of model
learning, with L4CasADi [16] used to interface the models
with the CasADi solver.

A. Gaussian Process Internal Model

A GP defines a distribution over functions fff (xxx) such
that any finite set of function values follows a multivariate
Gaussian distribution. Given training data D = {(xxxi,yyyi)}N

i=1,
the GP provides a predictive distribution for a new input xxx∗
with mean and variance given by:

µ∗ = kkkT
∗
(
K +σ

2
n I
)−1

y, (1)
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∗ = k(xxx∗,xxx∗)− kkkT

∗
(
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2
n I
)−1

kkk∗, (2)

where K is the kernel matrix computed from training inputs,
k(·, ·) is the kernel function (for the covariance between two
points), kkk∗ is the vector of kernel evaluations between xxx∗ and
each training point, and σ2

n is the noise variance [8].
The kernel used encodes assumptions about the structure

and smoothness of the function — choosing appropriately
is critical for performance [17]. The kernel hyperparameters
are optimized in the learning process.

For predicting multi-dimensional outputs, when outputs
are independent, GP regressions can be stacked in parallel
with efficiency gains possible when the distribution and
smoothness are similar across output dimensions so that the
same kernel calculations can be reused [8].

B. Bayesian Neural Network Internal Model

A BNN extends on a standard NN by treating the network
weights W as random variables with a posterior distribution
given by:

p(W | D) =
p(D |W ) p(W )

p(D)
. (3)

The predictive distribution for a new input x∗ is then obtained
by marginalizing over the weight posterior:

p(yyy∗ | xxx∗,D) =
∫

p(yyy∗ | xxx∗,W ) p(W | D)dW. (4)

Based on this, BNNs can predict epistemic uncertainty
in the output yyy∗. Aleatory uncertainty can be modeled
separately by adding a Gaussian noise term to the output
layer for each output dimension.

Approximate inference methods (e.g., Monte Carlo sam-
pling) are employed for predicting mean and variance since
the integral is typically intractable [9]. The variance can also
be propagated forwards using a maximum a posteriori (MAP)
estimate of the weights and approximate moment matching,
yielding a Gaussian approximation to the posterior [18]. This
approximation also allows automatic differentiation of the
variance with respect to the input, important for efficient
MPC optimization, and is used here for this reason.

BNNs can capture complex nonlinear mappings and, when
sufficiently trained, yield a predictive mean and uncertainty
analogous to GPs.

Figure 1 compares a learned BNN representation of the
vehicle dynamics with that of a GP. The models are learnt
from 500 datapoints of simulated nonlinear vehicle dynamics
with additive Gaussian noise (std. dev. 0.03 rad/s for the
yaw rate output as plotted). The BNN architecture used
here and throughout the paper is a 2-layer fully connected
network with 64 hidden units per layer and rectified linear
unit (ReLU) activations. The GPs use a squared exponential
kernel with automatic relevance determination and have a
zero mean function and Gaussian likelihood [8]. The GP
and BNN models are trained on the same data. Predictions
are shown in Figure 1 for a forward vel. of 18 m/s with
zero for all other initial state variables, over a range of input
steering angles.

III. COMPARATIVE ANALYSIS

A. Computational Efficiency

• GPs: Exact GP training has a computational complexity
of O(N3) (with N being the number of data points), and
each inference is O(N) for the mean and O(N2) for the
variance [8]. Sparse GP approximations can reduce this
cost (typically to O(NM2), O(M), O(M2) for training,
mean prediction and variance prediction respectively,
where M is the number of inducing points), making GPs
suitable for small to moderate data sizes [19], [20], [21].
Intelligent selection of covariance functions can be used
to exploit structure in the dynamics and minimize the
number of training/inducing points needed [8], [22].

• BNNs: BNNs training is approximately O(N). In-
ference involves multiple forward passes (e.g., using
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Fig. 1: GP and BNN internal model predictions for vehicle
dynamics. In the top right figure uncertainties are stacked.

Monte Carlo dropout) [9], or additional operations to
track variance propagation which adds overhead [18].

Thus, while BNNs scale better to higher dimensional/more
complex dynamics with large datasets, for small datasets the
overheads in training and evaluation can be more costly.

B. Prediction Accuracy

• GPs have demonstrated excellent performance in low-
data regimes [23]. In the GP-based driver model [4],
prediction accuracy improved over a series of maneu-
vers, as evidenced by decreasing path error.

• BNNs can capture more complex dynamics given suffi-
cient data. In tasks involving high-dimensional inputs
or extensive driving scenarios, a BNN is likely to
outperform a GP [11].

Figure 2 shows a plot of prediction error versus number
of training datapoints for BNN and GP methods (with the
same model setups as for Figure 1). For the GP, a variational
sparse GP [20] (with 100 inducing points and the same
covariance, mean and likelihood functions as the exact GPs)
is also shown. The data plotted comes from 100 repeats for
each data point. These results show, when data is limited,
GPs achieve much better modeling accuracy. However, once
data is plentiful, BNN accuracy continues to improve toward
very small modeling errors, while exact GP computation
becomes impractical due to computational cost and sparse
GPs saturate their ability to learn features of the dynamics
with the number of inducing points they have available.

C. Robustness

When the internal model is used in a predictive control
framework, reasonable responses in out-of-distribution re-
gions and robustness to noise and disturbances are critical.
Human drivers are known to be robust to disturbances and
noise in the vehicle dynamics, and this is a key requirement
for any driver model. GPs and BNNs have different strengths
in this regard with MPC:

• GPs with common covariance kernels (e.g., squared
exponential) have helpful properties for robustness with

101 102 103 104

Number of training datapoints (log scale)

0.00

0.05

0.10

0.15

0.20

0.25

RM
S 

ya
w 

ra
te

 e
rro

r

Yaw rate prediction error vs. training set size
Exact GP
Sparse GP
Bayesian NN

Fig. 2: Prediction accuracy against dataset size.

MPC — uncertainty is guaranteed to increase with devi-
ation from training data and predictions are guaranteed
to be smoothly varying (over a known, often infinite,
number of derivatives) [8]. Poorly selected kernels or
poor hyperparameter initialization can significantly im-
pact robustness due to overfitting and local optima [17].

• BNNs performance heavily depends on training data
and on convergence during training [9]. Extrapolation
to unseen regions of the input space has no guarantees
and can be unpredictable [24].

D. Ability to Represent Observed Human Behaviors

The ability to represent human behaviors is crucial for
driver models.

• GP models have been shown to replicate human driver
behaviors effectively, particularly in low-data regimes,
where it can learn and adapt quickly [4].

• BNN models, while capable of representing complex
behaviors, generally require larger datasets to achieve
similar performance. Differences in how uncertainty is
handled and represented can influence the simulated
driver’s behavior (cautious versus adventurous).

Simulations here are set up to replicate human driver exper-
iments performed by Keen [7] (further analysed in [4]). In
that experiment, participants drove an instrumented vehicle
through a series of 12 elk test maneuvers on a test track at
a constant speed (18 m/s). Their control was analysed and
evidence of learning and different behaviours were observed.
Performance of an adventurous-driving participant is shown
in Figure 3 from [7], [4]. Results are plotted for path
following error and control effort across the maneuvers,
showing both the trade-off between these objectives and
the overall learning which occurs. Associated steering angle
traces and contrasting cautious control are shown in [4].

In Figure 4, simulated results from the driver model
with both GP and BNN models are shown over the same
series of maneuvers. The same driver and vehicle model
parameters were used for both internal models (replicating
the experimental conditions identified in [7], with cost set
for adventurous control with a low penalty on prediction
variance). Datasets were initialised with 150 datapoints from
the dynamics at normally distributed inputs. For each ma-
neuver an additional 70 observed datapoints were added to



Fig. 3: Human results on elk test with adventurous driver
[7], [4]. Maneuver number shown by increasing marker size.
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Fig. 4: Driver model elk test results with GP and BNN. The
markers show statistically selected1 representative maneuver
series of 12 elk test runs from 100 repeats of this with each
model. Maneuver number is indicated by marker size, with
the first maneuver the smallest and the last (12th maneu-
ver) the largest. The same vehicle/cost/noise parameters and
dataset sizes are used for both models.

the dataset. Model training was performed using the full
current dataset prior to each maneuver. A trend of improving
performance is seen through the maneuvers, with the high
run-to-run variability expected of adventurous control. With
the BNN for the initial maneuvers the driver model per-
formed poorly, not reliably maintaining control in maneuvers
until approximately the fourth repeat, as indicated by very
high path-following errors, demonstrating the impact of low
BNN accuracy with limited data. The GP model on average
displays lower control effort, believed to be a result of a
smoother learned approximation to the vehicle dynamics due
to the prior beliefs encoded in the GP kernel, leading to more
smoothly varying control actions.

Adventurous and cautious steering control traces (with
low and high weightings on the variance penalty in the cost

1The representative selection method used finds the series where the
multivariate Gaussian distribution over the metrics from that series has the
minimum KL divergence from an average distribution of metrics over all
the series repeats [4]. Selection is used to show the variability between runs,
important to the modeling here, which is lost when averaging.

function) are shown in Figure 5 for the same repeated elk
test maneuvers as simulated using the driver model with a
BNN internal model. This shows the variance information
from the BNN can be used to adjust the driving style.
Large magnitude and highly variable control are seen in
the early maneuvers for the adventurous control, before
converging to a learned pattern, compared to consistent,
lower magnitude control by the cautious driver with more
gradual convergence. Equivalent control traces with a GP
internal model and from human drivers are shown in [4].
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Fig. 5: Driver model steering traces with BNN internal model
for repeated elk tests with high (top 3 plots) and low (bottom
3 plots) penalties on prediction variance to represent cautious
and adventurous control respectively.

IV. CONCLUSION

Both Gaussian Processes and Bayesian Neural Networks
offer viable frameworks for simulating human driver actions
incorporating learning and uncertainty. GPs are particularly
effective in data-sparse scenarios, providing interpretable
uncertainty estimates that align well with human behavior
observed during repeated driving maneuvers. Using BNNs
makes achieving fine-grained interpretability more difficult,
but they offer superior scalability and flexibility when dealing
with high-dimensional data or more complex scenarios.

The choice between the two approaches depends on the
specific application context:

• For small-scale applications or when interpretability is
key, a GP-based internal model is attractive.

• For large-scale or high-dimensional problems, BNNs
perform well.

Future work may explore hybrid approaches that combine
the strengths of both methods — utilizing GPs initially for
their accuracy and efficiency in low-data regimes, before
switching to BNNs for increased internal model accuracy
when datasets are larger.
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