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Abstract— This paper introduces the Proactive Assistance
through action-Completion Estimation (PACE) framework, de-
signed to enhance human-robot collaboration through real-
time monitoring of human progress. Central to PACE is OS-
DTWWP, a novel open-ended Dynamic Time Warping (DTW)
algorithm for real-time human action completion estimation,
which incorporates a Windowed-Pearson (WP) correlation-
based distance metric to dynamically track task progression
from hand movements. PACE trains a reinforcement learning
policy from limited demonstrations to generate a proactive
assistance policy that synchronizes robotic actions with human
activities, minimizing idle time and enhancing collaboration
efficiency. We validate the framework through user studies
involving 12 participants, showing significant improvements in
interaction fluency, reduced waiting times, and positive user
feedback compared to traditional methods.

I. INTRODUCTION

Recent advancements in robotics and artificial intelligence
have significantly increased the use of robots alongside
humans in industrial settings [1]. Assembly tasks provide
an ideal scenario for human-robot collaboration (HRC),
leveraging robot precision and speed alongside the dexterity
and adaptability of humans. This collaboration can enhance
productivity and improve work quality by assigning repeti-
tive, physically demanding tasks to robots [2].

However, effective human-robot collaboration requires
careful task planning and assignment, which is challenging
due to the inherent variability in human performance. For
example, different operators may take varying amounts of
time to complete the same task, even when following a
predefined sequence. Mutual understanding is therefore cru-
cial, and timing plays a key role in shaping interactions, as
humans are especially sensitive to timing and smoothness [3].

Our work focuses on enabling the robot to proactively
support the human operator, minimizing idle times and
reducing human effort. Two primary challenges must be
addressed: (i) accurately perceiving and predicting human
actions and their temporal progression, and (ii) planning the
robot’s actions to synchronize with the human’s needs.

To tackle these challenges, we first estimate human action
completion using a real-time adaptation of Dynamic Time
Warping (DTW), which accommodates variations in human
hand movements. We then leverage data collected from
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demonstrations to train a reinforcement learning (RL) policy
that reduces idle times for both human and robot.

To our knowledge, only two studies have explored real-
time monitoring of human movements at the action level.
The first [4] employs Open-End Dynamic Time Warping
(OE-DTW) [5] to estimate task progression and dynamically
re-plan robot actions. The second [6] proposes a Sigma log-
normal model of human movements, outperforming DTW for
action completion estimation; the same approach is also used
for task planning in a collaborative assembly application [7].
However, OE-DTW alone is not robust to the variability
of human movements. We therefore introduce a new DTW-
based algorithm capable of overcoming these limitations and
integrate it into an RL framework that directly optimizes
robot performance without explicitly estimating action com-
pletion times.

Our work offers the following key contributions:
• We present OS-DTWWP, a novel open-ended DTW al-

gorithm for real-time human action completion estima-
tion, incorporating a Windowed-Pearson (WP) distance.

• We introduce the Proactive Assistance through action-
Completion Estimation (PACE) framework, which trains
an RL agent that proactively assists a human operator by
monitoring their progress with OS-DTWWP, minimizing
waiting times and ensuring seamless human-robot syn-
chronization.

• We validate the PACE framework with real-world ex-
periments involving a chair assembly task and human
participants.

II. PROACTIVE ASSISTANCE THROUGH
ACTION-COMPLETION ESTIMATION FRAMEWORK

We consider a scenario in which a human and a robotic
manipulator perform separate tasks concurrently. The robot
executes a sequence of M robot-task actions {aR

i }M
i=1, which

is repeated indefinitely. Simultaneously, the human performs
a sequence of N human actions, denoted by H = {aH

j }N
j=1.

The human requires the robot’s assistance to complete a
subset of these actions, referred to as joint actions and
denoted by J = {aJ

l }L
l=1, where J ⊆H. We define the operator

α(·) to map the index of a joint action to the corresponding
human action index, such that aH

α(l) = aJ
l . Without loss of

generality, we assume that the last human action is a joint
action (i.e., aH

N = aJ
L), and no two consecutive human actions

are joint actions (i.e., if aH
j ∈ J, then aH

j+1 /∈ J).
To assist the human, the robot must first complete the

current robot-task action aR
i before pausing its ongoing task.
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Fig. 1. Hierarchical state machine depicting the collaborative task from the
robot perspective. The robot transitions from ROBOT-TASK to ASSISTING
in between states aR

i if a = 1. Once an (assist) action Ai is completed, the
robot goes back to its task. The state machine follows the conventions as
in [8]. Each transition is labeled with guard / effect. A transition is taken
on a reaction only if the guard holds true.

Once paused, the robot performs a preparatory action (e.g.,
repositioning or collecting a tool) to prepare for the joint
action. After completing the joint action, the robot executes
a homing action before either resuming with the robot-task or
preparing for the next joint action. The sets of preparatory
and homing actions are denoted as {aP

l }L
l=1 and {aE

l }L
l=1,

respectively. A depiction of the collaborative task in the form
of a hierarchical state machine is provided in Fig. 1.

We assume to have access to a set of Q demonstrations,
consisting of human trajectories Yj = {y j

k}
Q
k=1 for each non-

joint human action H \ J. Each trajectory consists of the
Cartesian position of the human hand along the x-, y-, and
z-axes. The objective is to minimize idle times for both robot
and human, i.e., the time each agent waits for the other before
starting the joint actions. We define the cost function:

C(∆R
total idle,∆

H
total idle) := ∆

R
total idle +λ∆

H
total idle, (1)

where ∆R
total idle and ∆H

total idle are the total robot and human
idle times, respectively, and λ > 0 is an arbitrary weighting
coefficient that balances their relative importance.

A. Real-Time Human Action Completion Estimation

The first component of the PACE framework is the real-
time estimation of human action completion percentage.
While this challenge has received limited attention in the
HRC literature [6], [9], it is critical for accurately tracking
task progress and ensuring the robot provides assistance at
the most appropriate moments. In this section, we introduce
a novel version of Open-End Dynamic Time Warping (OE-
DTW) [5], incorporating a correlation-based distance metric
effective for capturing patterns in human hand movements.

Dynamic Time Warping (DTW)[10] is a time-series align-
ment algorithm that aligns a signal to a reference by
minimizing cumulative Euclidean distances. Its open-ended
variant, OE-DTW, has been used for human task progress
monitoring[9], but lacks regularization, often resulting in
unrealistic warping paths for human motion. Soft-DTW [11]
alleviates these issues by introducing a differentiable soft-
minimum operator that weighs all possible warping paths,
improving robustness in tasks such as time-series clustering
and temporal signal matching.

Building on these methods, we combine open-ended and
soft DTW to develop a more robust alignment approach

(Algorithm 1). In this algorithm, δ is the pointwise distance
function (commonly Euclidean), and minγ denotes the soft-
minimum operator from [11]. Algorithm 1 also computes the
phase of a query signal relative to a reference, defined as the
fraction of the reference trajectory matched at each timestep.
Given an alignment function π that associates each query
index i with a reference index j∗, the phase at timestep i is:

τi = π(i)/n−1, (2)

where n is the length of the reference trajectory. The phase τi
quantifies the completion percentage as a value in [0,1]. We
refer to the Open-end Soft-DTW algorithm as OS-DTWEU,
where EU specifies the use of the Euclidean distance.

However, the Euclidean distance employed in most DTW
algorithms fails to align signals that have both local shape
variations and substantial shifts in absolute positions. To
overcome these limitations, we introduce a novel correlation-
based metric called Windowed-Pearson (WP) distance, which
normalizes amplitude differences over windows during align-
ment. This results in an online-capable method that directly
compares trajectory shapes through local correlation analysis,
while preserving DTW’s temporal elasticity. We formally
define the WP distance between two signal samples as:

δ
w
WP(pi,q j) :=

d−1

∑
k=0

1−
Cov

(
pi−w+1:i,k, q j−w+1: j,k

)√
Var

(
pi−w+1:i,k

)
Var

(
q j−w+1: j,k

)


(3)
where w represents the window size, and pi: j,k denotes a
subsequence of p along the k-th dimension, spanning from
index i to j. The same notation applies to q. We refer to the
combination of Open-end Soft-DTW with the WP distance
as OS-DTWWP.

Algorithm 1 Open-end Soft-DTW

Inputs: Query signal p = [p0, . . . ,pm−1] ∈ Rm×d ; Refer-
ence signal q = [q0, . . . ,qn−1] ∈ Rn×d ; Distance metric
δ (·, ·); Smoothing parameter γ ≥ 0
Output: Phase τττ = [τ0, . . . ,τm−1] ∈ Rm of p w.r.t. q

1: Initialize D ∈ Rm×n, where Di, j = δ (pi,q j)
2: Initialize R ∈ R(m+1)×(n+1), with R0,0 = 0, Ri,0 = ∞ for

i ∈ [1,m], and R0, j = ∞ for j ∈ [1,n]
3: for i = 1 to m do
4: for j = 1 to n do
5: Ri, j = Di−1, j−1 +minγ(Ri−1, j,Ri, j−1,Ri−1, j−1)
6: end for
7: j∗ = argmin j∈[0,n−1] Ri, j
8: τi = j∗/(n−1)
9: end for

B. POMDP

Human-robot interaction is modeled as a finite-horizon
episodic POMDP. The robot, acting as the agent, makes
binary decisions (assist or not) between each robot-task
action, while the human is treated as part of the environment.
The POMDP is formally defined as a tuple (S,A,T,R,Ω,O),



Fig. 2. Main steps of the collaborative assembly process: a) the human places the rails while the robot sorts cubes; b-c) human and robot work together
to carry and position the side of the chair; d) the robot hands an Allen key to the human.

where S is the state space, A = {0,1} is the set of policy
actions (with 0 and 1 representing do not assist and as-
sist, respectively), T (s,a,s′) is the state transition function,
R(s,a,s′) is the reward function, Ω is the observation space,
and O(s) is the observation function. Note that the policy
action a ∈ A should not be confused with the task actions
representing the robot operations introduced in Section II.

Each element of the state space S is defined as s =
(aR

i ,a
H
j ,a

J
l ,∆

H
start ,yH ,∆R

idle,∆
H
idle), where: aR

i denotes the last
robot-task action, aH

j is the current human action, aJ
l repre-

sents the joint action that human and robot should perform
next, ∆H

start is the elapsed time from the start of the current
human action aH

j , yH is a vector representing the observed
human hand trajectory from the start of the current human
action, ∆R

idle and ∆H
idle are the waiting times of robot and

human observed during the last transition.
The transition function T (s,a,s′) := P(s′ | a,s) describes

the probability of transitioning from state s to state s′ =
(aR

i′ ,a
H
j′ ,a

J
l′ ,∆

′H
start ,y′H ,∆′R

idle,∆
′H
idle).

The reward function R(s,a,s′) is designed to minimize the
total cost introduced in Equation (1), thus:

R(s,a,s′) :=−∆
R
idle −λ∆

H
idle. (4)

The observation function is defined as O(s) :=
(aR

i ,a
H
j ,∆

H
start ,τ

j(yH)), where τ j(yH) represents the phase
of the human action aH

j , computed from the observed human
hand trajectory yH using OS-DTWWP. The observations
consist of the last robot-task action, the current human
action, the elapsed time from the start of the current human
action, and the estimated human action phase.

C. Simulation and Training

We built a simulated environment, to avoid the issues of
training RL algorithms directly on real-world robots, but
informed by limited real-world demonstrations, to model the
problem in Section II and enable online, on-policy algorithms
to solve the POMDP in Section II-B. We adopt Proximal
Policy Optimization (PPO) [12] for its handling of discrete
actions and robustness in stochastic environments.

To model the collaborative task, we assume the dura-
tion of each action follows a Gaussian distribution, and
estimate them from demonstration data. Specifically, ∆X

k ∼
N(µXk ,σ

2
Xk
), where X ∈ {H,R,P,E} corresponds to human,

robot-task, preparatory, and homing actions, respectively. At
the beginning of each episode, we sample from these dis-
tributions the durations human actions {∆H

j }N
j=1, preparatory

actions {∆P
l }L

l=1, and homing actions {∆E
l }L

l=1. Then, one
trajectory ỹ j is sampled from the set of demonstrations Yj

for each non-joint action aH
j . Moreover, to avoid overfitting

on the training data, we linearly rescale the time axis of
each trajectory ỹ j to align with each sampled duration
∆H

j . As a result, each new trajectory represents either a
compressed or stretched version of an actual demonstration.
We found this augmentation essential for ensuring robustness
and improving the policy’s generalization capabilities.

III. EXPERIMENTS AND RESULTS

The PACE framework was validated in a real-world
scenario through a pilot study involving the collaborative
assembly of an IKEA wooden chair. In this assembly process,
the human operator performed tasks requiring fine manual
dexterity, such as screwing and positioning parts, while the
robot acted as a smart assistant. The experimental setup
consists of a Franka Emika Panda robot and three main
working areas: a sorting table for the robot task, a warehouse
table where the components to be assembled are stored, and
an assembly table where the collaborative assembly process
takes place. Participants were equipped with the Xsens MVN
Awinda motion capture system [13] which recorded the
position of their right hand at a sampling rate of 10 Hz.

A. Task Description

The robot task involves cube sorting operations (aR
i ). The

assembly process, illustrated in Fig. 2, is outlined as follows:
(i) the human connects 4 rails to the right side of the chair
(aH

1 ); (ii) the human and robot collaboratively transport the
left side from the warehouse area and place it on top of the
rails (aJ

1); (iii) the human adjusts the top chair sides and
places 3 screws on the left side (aH

3 ); (iv) the robot hands an
Allen key to the human (aJ

2); (v) the human uses such key to
tighten 2 screws (aH

5 ); (vi) the robot hands over a second
key for the human to tighten the remaining screw (aJ

3).
For reference, the average durations of the non-joint human
actions described above were approximately 22, 18, and 40,
seconds respectively. The robot preparatory actions aP

l for
the following joint actions took on average 11 seconds, 8
seconds, and 9 seconds, respectively. Each robot cube sorting
operation, represented by the action aR

i , had a duration of
approximately 8 seconds.

B. Data Collection and Training Procedure

We collected data from 5 subjects, with each subject
performing the assembly task 4 times. Additionally, one of
the subjects provided an extra demonstration to generate
the references for the OS-DTWWP algorithm. During the
data collection, users explicitly requested assistance from the



robot by pressing a button. We implemented the POMDP de-
scribed in Section II-B as a custom Gymnasium environment
[14] and used the Stable-Baselines3 library [15] for policy
training. Out of the 4 demonstrations per subject, 3 were
used for training and 1 for validation. Finally, motivated by
the quantitative studies in [16], [17], our experiments assume
that the cost of operating a robot is roughly one-third that of
human labor. Consequently, we set the weighting parameter
λ in Equations (1) and (4) equal to 3.

C. User Study and Experiment Design

The experiments involved 12 volunteers (5 women and
7 men) aged 24 to 28, including two individuals who
also participated as training subjects. Participants were first
briefed on the assembly task and the robot’s action capabili-
ties. Then, they assembled the wooden chair collaborating
with the robot controlled by three different methods: (i)
PACE, our proposed method, incorporating phase estimation
via OS-DTWWP; (ii) PACE w/o phase, an ablation method
that excludes the phase from the observations provided to
the policy; (iii) explicit query, a baseline system in which
the human operator explicitly requests robot assistance by
pressing a button after completing each action.

Each participant experienced all three methods in a ran-
domized, unknown order, completing two trials per method.
Participants were not informed in advance about the differ-
ences between PACE and PACE w/o phase. After completing
each set of trials, they filled out the NASA Task Load Index
survey [18], and a custom 5-point Likert scale questionnaire.

D. Results

Our goal is to evaluate whether proactive robot policies
can reduce assembly downtime and improve user experience.
To investigate this, we compared the three methods based
on robot and user waiting times. For each experiment, we
recorded the robot’s and human’s idle times. Quantitative
results are summarized in Table I. The reported quantities are
the averages computed from all participants’ trials. Columns
A1, A2, and A3 show the idle times with respect to the first,
second, and third joint actions. The difference between the
performances of PACE and PACE w/o phase is statistically
significant (p= 0.007), computed using a pairwise Wilcoxon
signed-rank test on the average cost per subject.

As expected, participants experienced the longest waiting
times with the explicit query method. This discomfort is
reflected in survey results, where participants reported that
the robot took too long to provide assistance (see Fig. 4).
Additionally, Table I shows that PACE reduces robot idle
time by more than half compared to PACE w/o phase,
without significantly increasing human waiting time. Note
that the baseline explicit query exhibits zero idle time by
design, as the robot is manually activated by the participant.

PACE w/o phase also outperforms the other methods in
subjective measures, as reported in Fig. 4. Users reported
higher levels of fluency, understanding, and overall satisfac-
tion, indicating that the method adapts well to individual
participant pacing. Furthermore, Fig. 3 shows that a proactive
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Fig. 3. NASA-TLX [19] findings for subjective measures on a 5-point
scale. Plot shows means and 75% confidence intervals of ratings.

Rushed Delay Understanding Fluency Satisfaction
1

2

3

4

5

Li
ke

rt
 r

at
in

g

Explicit Query PACE w/o Phase PACE

Fig. 4. Findings for subjective measures on a 5-point scale ranging from
Strongly Disagree to Strongly Agree. Plot shows means and 75% confidence
intervals of ratings. The questions are the following. Rushed: I felt rushed by
the robot’s action. Delay: I felt the robot took too long to provide assistance.
Understanding: I felt the robot had a good understanding of the task.
Fluency: The robot and I collaborated fluently. Satisfaction: I feel satisfied
by the performance of the system.

robot operating autonomously does not increase mental strain
or the overall Task Load Index. Notably, five out of twelve
participants explicitly stated in the questionnaire’s open
comment section that they preferred the system monitoring
their task progress, with many appreciating that assistance
was provided only as they neared the end of their action.

TABLE I
EXPERIMENTAL RESULTS ON HUMAN AND ROBOT IDLE TIMES

Method Robot Idle Time [s] Human Idle Time [s] Cost
A1 A2 A3 Total A1 A2 A3 Total (λ = 3)

Explicit query 0.0 0.0 0.0 0.0 14.00 11.28 12.15 37.43 112.3
PACE w/o phase 1.56 3.48 11.64 16.68 1.79 1.02 1.06 3.87 28.29
PACE (ours) 1.93 2.65 1.28 5.86 1.20 0.56 2.56 4.32 18.81

IV. CONCLUSIONS

In this work, we introduced the Proactive Assistance
through action-Completion Estimation (PACE) framework,
which leverages reinforcement learning and real-time human
progress monitoring to improve robotic assistance in collab-
orative tasks. PACE addresses variability in human execution
pace through OS-DTWWP, a novel Dynamic Time Warping
algorithm that incorporates local correlation-based distances
for robust real-time action completion estimation.

Our experiments with human participants demonstrated
that a robot using PACE can reduce idle times by more than
half, with participants highlighting its timely and adaptive
support. These results confirm that PACE not only enhances
collaborative efficiency but also improves user experience,
paving the way for more intuitive and effective human-robot
interactions in assembly task.
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