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Abstract— Existing research lacks comprehensive datasets that
capture the full range of pedestrian behaviors, e.g., including
avoidance, neutrality, and attraction in the presence of robots.
In this paper, we present a novel dataset capturing pedestrian
behavior in the presence of robots under varying conditions,
enabling better prediction of responses like avoidance or
attraction. Leveraging this, we introduce the Neural Social
Robot Force Model (NSRFM), which outperforms baselines in
predicting real-world pedestrian trajectories and supports the
development of socially-aware robot navigation.

I. INTRODUCTION

Understanding and modeling pedestrian behavior in shared
environments with robots is crucial to ensure effective and
safe navigation as well as seamless human-robot interaction.
With the increasing presence of robots in public spaces
such as shopping malls [1], sidewalks [2], [3], hospitals [4],
it becomes essential to develop robust navigation systems
capable of moving among humans without causing disruptions.
This challenge is intensified by the bidirectional interaction
between humans and robots, where pedestrians influence
robot behavior, and vice versa. Despite significant advances
in autonomous navigation, current systems often struggle to
adapt to human behaviors such as context-dependent reactions
to robots [2], [3], leading to suboptimal performance in
pedestrian-rich environments.

Therefore, effective social navigation for robots requires
a well-defined representation of pedestrian behavior. The
key challenge lies in accurately modeling how pedestrians
respond to robots, as many existing approaches either focus on
reactive robot control or rely on overly simplistic pedestrian
models. Consequently, they often fail to capture the nuanced,
context-dependent nature of human behavior [5], as contrary
to common assumptions, pedestrians do not exclusively avoid
robots. As illustrated in Fig. 1, their responses may vary and
can include behaviors such as avoiding, ignoring, or even
approaching the robot driven by curiosity [6]. Accurately
modeling, detecting, and predicting these diverse behaviors is
crucial for developing navigation strategies that enable robots
to integrate seamlessly into human environments.

Learning these pedestrian behaviors and generating effec-
tive robot navigation policies requires high-quality datasets.
However, existing trajectory datasets [7]–[9] do not explicitly
capture or annotate pedestrian reactions to the robot in
the scene, making it difficult to learn pedestrian behaviors
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Fig. 1: Example scenario of a robot influencing the trajectories of nearby
pedestrians, leading them to show one of three distinct behaviors: avoidance,
neutrality, or attraction.

effectively. Additionally, existing evaluation frameworks
often lack the ability to comprehensively model diverse
pedestrian behaviors and assess robot navigation policies
beyond standard metrics, such as arrival rate, collision rate,
and time to goal. A more nuanced approach is needed
to capture the robot’s influence on pedestrian trajectories,
including deviations from the shortest path [5].

In this paper, we propose to overcome these limitations
through two key contributions: (i) a real-world pedestrian
dataset capturing diverse human-robot interactions and (ii)
a neural social robot force model (NSRFM) that enhances
the traditional social force model (SFM) [10] for pedestrian
trajectory prediction. Our dataset captures pedestrian trajec-
tories under three conditions—no robot, a stationary robot,
and a moving robot—highlighting the distinct behaviors of
avoidance, neutrality, and attraction potentially observed in
each scenario. Using the pedestrian trajectories of our dataset,
we train five individual networks, each mimicking a distinct
force of the NSRFM, to predict diverse pedestrian behaviors.
This approach allows for a better prediction of trajectories
influenced by robots compared to the original SFM. Our
experimental evaluation demonstrates that the NSRFM out-
performs the traditional SFM and variations in predicting
pedestrian trajectories, effectively capturing diverse human-
robot interactions. Together, these elements contribute to the
development of diverse social robot navigation strategies.

II. ROBOT-PEDESTRIAN INFLUENCE DATASET

Since existing large-scale datasets lack explicite annotations
of pedestrian-robot responses, we collected our own robot-
pedestrian influence (RPI) dataset. It is designed to capture
diverse pedestrian behaviors and enable the learning of the
various forces that will be incorporated in our novel Neural
Social Robot Force Model (NSRFM, see Sec. III). We now
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Fig. 2: Outdoor environments used for data collection. (a) A pathway crossing
with two office building entries. (b) A larger university campus open space.

describe the key aspects of our data collection process.
1) Overview: We collected data in two outdoor environ-

ments (see Fig. 2) with naturally present pedestrian entry and
exit points. Environment 1 is a 50m× 20m crossing, while
Environment 2 corresponds to a 50m × 60m open space.
We used a bird’s-eye view camera, as in Fig. 2, operating at
15Hz to capture the pedestrian trajectories and robot positions.
The data collection was conducted for two weeks during
periods when both individual and group trajectories were
likely to occur, ensuring representation of these modalities in
the dataset. In total, we recorded 18,669 trajectories across
142 hours of data in the two environments, with 16.45 %
of the trajectories including pedestrian-robot responses. The
average velocity of the pedestrians in our dataset is 1.51m/s.

2) Detection and Tracking: We detected and tracked
pedestrians in real-time using a YOLOv11 [11] model. Their
positions were projected onto the ground plane and converted
into 2D real-world coordinates, ensuring data privacy by
avoiding the storage of any identifiable information.

3) Trajectory Filtering: Due to factors such as pedestrians
standing still for long periods, abruptly changing direction, or
moving unpredictably while talking on the phone, we found
trajectories that were unusable for model training. Hence, we
applied filters to remove all trajectories that were shorter than
3.5 m, exceeded a speed of 2.7 m/s (running or cycling), or
contained loops.

4) Robots: For data collection, we used three different
robots, Toyota’s Human Support Robot (HSR), Neobotix’s
MPO700, and Unitree’s Go1 to study pedestrian interactions.
HSR is a mobile manipulator designed for human interaction
tasks, MPO700 an industrial mobile manipulator platform,
and Go1 a quadrupedal robot. Their varying sizes and mobility
types allowed us to analyze diverse pedestrian responses in
different scenarios.

5) Interaction Types: To capture diverse pedestrian-robot
interactions, we considered three distinct scenarios:

• Pedestrians Only (PD): No robot was present, and
only pedestrian trajectories were tracked. This scenario
provides baseline data for modeling fundamental pedes-
trian behaviors, including attraction toward a goal (fa),
repulsion from other pedestrians (fp), repulsion from
obstacles (fo), and group dynamics (fgr) in an extension
of the Social Force Model [12].

• Pedestrians with a Stationary Robot (PD-SR): One
of the three robots was placed at a fixed location
while pedestrian movements were recorded to analyze

Fig. 3: Structure of our new NSRFM for pedestrian trajectory prediction.
The input to NSRFM include pedestrian velocity, goal direction, distance
and direction to other pedestrians, distance and direction to the robot, and
direction to the group centroid. These inputs are provided to the 5 different
networks and the final outputs are combined to get the resulting social force
acting on the pedestrian.

Robot Type Attraction (%) Avoidance (%) Avg. Distance (m)
HSR (Stationary) 4.39 27.17 3.05

MPO700 (Stationary) 1.6 33.95 3.26
Go1 (Stationary) 7.82 26.39 3.24
Go1 (Moving) 7.96 26.1 3.41

TABLE I: Pedestrian Responses to Stationary and Moving Robots in terms
of attraction, avoidance, and average distance maintained.

how individuals react to a stationary robot. This setup
provides valuable data for modeling robot-induced
forces (frs ) based on different robot types. The results,
shown in Tab. I, indicate that pedestrian responses
varied depending on the robot type present. Overall,
the most attraction was shown towards the GO1, while
our industrial robot MPO700 showed the least attraction
behavior. These findings suggest that different robot
designs cause distinct social responses, which can inform
the development of socially aware navigation strategies.

• Pedestrians with a Moving Robot (PD-MR): In the
Scenario, the GO1 was teleoperated around a central
location while pedestrian trajectories were tracked. This
scenario enables comparisons of pedestrian responses
to stationary versus moving robots and provides data to
model robot-related forces based on the robot’s state of
motion (frm ). We observed that the moving robot had
the highest attraction rate.

Our dataset consists of 15, 461 trajectories for the PD case,
2, 948 trajectories (1090 for HSR, 837 for MPO700 and 1021
for GO1) for PD-SR, and 260 trajectories for the PD-MR,
providing a diverse range of pedestrian responses to robots
across different scenarios.

6) Data Structure: We store the data in the following
format:

• Frame Number: The sequential index and timestamp
of the stored frame.

• Pedestrian ID: A unique identifier for each individual
pedestrian. Note that pedestrians who leave and re-enter
the observed area are assigned new identifiers and treated
as distinct individuals.

• x and y Position: The pedestrian’s 2D position (in
meters) relative to the scene’s origin.

• Distance Increment: The change in position (in meters)
between two consecutive time frames, used to compute
velocities.



• Robot Presence: A boolean flag indicating whether a
robot is present in the scene.

• Robot Type: A classification label indicating the used
robot type.

• Robot Influence: A classification label indicating the
pedestrian’s response with the robot, categorized as
attractive, repulsive, or neutral, if a robot is present
in the scene.

III. NEURAL SOCIAL ROBOT FORCE MODEL (NSRFM)

The traditional Social Force Model (SFM) [10] defines
pedestrian motion as a result of attractive and repulsive forces,
including a goal-directed attraction force (fa), repulsion from
other pedestrians (fp), and repulsion from obstacles (fo):

F = fa + fo + fp (1)

A. Extension of the Traditional Social Force Model

In previous work [13], we demonstrated the need to
augment the SFM with additional forces, such as a robot
force, since the traditional SFM fails to capture the nuanced
behaviors exhibited when pedestrians encounter robots. Ad-
ditionally, we found that group forces significantly impact
pedestrian behavior near robots, as they can influence an
individual to move closer or farther away, independent of
their intrinsic behavior. To address these complexities, we
enhance the traditional SFM by an additional robot force (fr)
to model pedestrian-robot responses [13], [14] and a group
force (fgr) [12] to capture these social influences on human
trajectories. Therefore, Eq. 1 extends to:

F = fa + fo + fp + fgr + fr (2)

Note that the additional robot force only models the
repulsion behavior of pedestrians from a robot. However, our
observations from the RPI dataset revealed that repulsive
behavior towards a robot is not the only response, as
pedestrians may also show attraction or neutrality, which
has to be taken into account. Therefore, we define neutral
behavior as treating the robot as an obstacle, without any
individual response or force directed toward it. Additionally,
we observed that the repulsive effect of a moving robot on
pedestrians is similar to, but stronger than that of a stationary
robot, i.e., frm > frs . Therefore, to simplify learning the
repulsive force, we assume fr = frm . Similarly, we noticed
variations in repulsion behavior depending on the type of robot
used. However, in this paper, we use the maximum repulsion
across the different robot types for further calculations.

B. Learning the Parameters of the NSFRM

The original SFM uses mathematical formulas to represent
its individual forces, requiring extensive fine-tuning and
expert input for parameter optimization [12]. Inspired by
Zhang et al. [15] and Hossain et al. [12], we replace these
hand-crafted formulas with neural network-based models.

Our proposed NSRFM learns force parameters directly
from real-world data, eliminating the need for extensive
manual tuning. To learn the individual forces of the NSRFM,
we employ five separate networks to compute the force factors

that drive pedestrian motion, as shown in Fig. 3. Each model
captures a distinct force component within the NSRFM, while
their outputs are summed to compute the final pedestrian
force which updates their velocity. To counter bias in the
RPI dataset, we limit the pedestrian speed to 1.34 m/s as
found across literature [16], [17].

1) Goal Attraction, N(fa): A twin-branched multi-layer
perceptron (MLP) that predicts goal-directed forces. One
branch processes the pedestrian’s velocity, while the other
uses goal direction. Trained on straight-line trajectories, it
ensures accurate goal-seeking behavior.

2) Obstacle Repulsion, N(fo): A two-stage MLP that
takes the distance and unit direction vector to obstacles as
input, outputting repulsion forces in the x and y directions.
Trained on pedestrian trajectories that demonstrate direct
obstacle avoidance.

3) Pedestrian Repulsion, N(fp): Similar to N(fa) but
incorporates inputs for pedestrian distance and direction. Due
to the anisotropy of human perception and attention, it filters
for individuals outside the pedestrian’s field of view and is
trained on real and synthetic avoidance trajectories.

4) Robot Repulsion, N(fr): Similar in structure to the
N(fo), this model predicts pedestrian repulsion from robots
based on distance and direction. It is trained on trajectories
where pedestrians show evasive behavior near robots.

5) Group Cohesion, N(fgr): A twin-branched model
that maintains pedestrian proximity to a group. One branch
processes velocity in the direction of goal, while the other uses
the direction to the group centroid, outputting an attraction
force toward the group.

C. Behavior Detection

For dataset labeling it is essential to classify distinct human
behaviors in response to the robot’s presence in the scene.
To achieve this, we introduce a heuristic-based detection
approach. At each time step, we analyze the pedestrian’s
heading and define an attraction cone with an angle range of
[−ϵ, ϵ]. If the pedestrian is within the robot’s social zone [18]
of influence (3 m) and the robot’s position falls within the
cone, we classify the pedestrian’s behavior as attraction toward
the robot. Conversely, if the robot’s position is outside the
cone and the pedestrian’s current heading deviates away from
the robot compared to their past heading by more than a
threshold factor ϕ, the behavior is classified as repulsion. If
neither condition is met, the behavior is classified as neutral.
Fig. 4 illustrates example trajectories for each behavior,
highlighting the differences in pedestrian movement patterns.

IV. EXPERIMENTAL EVALUATION

In our experimental evaluation, we first compare our
RPI dataset against the ETH [19] and JRDB [7] datasets
by comparing the number of pedestrian trajectories recorded
both in the presence and absence of a robot. Then, we validate
our learned NSRFM model by comparing its trajectory
predictions against ground truth data, a tuned SFM [10],
and the SRFM [13] baseline. In addition, our supplemental
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Fig. 4: Distinct pedestrian behaviors when close to robots taken from our RPI dataset: (a) The pedestrian clearly avoids the static robot (star) while walking
toward their goal. (b) The pedestrian walks close to the robot without any noticeable change in trajectory direction. (c) The pedestrian deviates from their
original path to approach the robot before resuming their goal-directed movement.

Dataset Trajectories HRI Trajectories Percentage
ETH [8] 750 0 0 %

JRDB [7] 1,786 28 1.57 %
RPI (Ours) 18,669 3,071 16.45 %

TABLE II: Comparison of common datasets with robot presence in terms
of number of trajectories with and without human-robot interaction. Our
dataset shows the highest percentage of trajectories where the human reacts
to the presence of the robot in the scene.

video1 shows examples of recorded trajectories and a real
robot trained to respond to the distinct pedestrian behaviors
shown in this paper.
A. Dataset Comparison

We compare the datasets in terms of total trajectories,
robot-influenced trajectories (RIT), and the percentage of
RITs in the whole dataset (see Tab II). The ETH dataset is
a benchmark standard for pedestrian trajectory prediction,
containing 750 trajectories. However, it does not include
human-robot interactions, making it unsuitable for evaluating
pedestrian responses to robots.

The JRDB dataset includes 1,786 total trajectories, of
which 28 involve RITs. Unlike other datasets, JRDB provides
both indoor and outdoor scenes and offers readily available
pedestrian data relative to the robot’s position, eliminating the
need for extensive preprocessing (e.g., extracting pedestrian
information from LiDAR or other sensor data).

In contrast, our RPI dataset provides a significantly larger
sample size, with 18,669 total trajectories, including 3,071
RITs. With the highest RIT percentage of 16.45%, this makes
it the most comprehensive dataset for studying pedestrian
responses to robots in real-world environments. The greater
proportion of RITs allows for more robust evaluation of
models incorporating robot forces fr.

These findings highlight the RPI dataset’s advantage in
modeling pedestrian behavior in the presence of robots,
making it a valuable benchmark for developing socially aware
navigation systems.
B. Performance Comparison of SFM Variants

We evaluate different variations of the Social Force Model
(SFM) using the Average Displacement Error (ADE) on three
datasets: ETH, JRDB, and RPI. ADE measures the mean
deviation between predicted and actual pedestrian trajectories,
with lower values indicating better predictive accuracy.

Table III compares our NSRFM with and without group
force and robot force effects, alongside the optimization-based

1https://www.hrl.uni-bonn.de/publications/rpi.mp4

Model
Average Displacement Error (ADE) ↓
ETH JRDB RPI (Ours)

NSRFM (with group force) 0.474 0.217 0.744
NSRFM (without group force) 0.506 0.217 0.744
NSRFM (without robot force) 0.506 0.38 0.753

SRFM [13] 0.616 0.336 1.117
SFM [10] 0.616 0.412 1.118

TABLE III: Comparison of different variations of the SFM in terms of
Average Displacement Error (ADE) in meters. The results demonstrate that
our NSRFM achieves the lowest ADE across all datasets, highlighting the
effectiveness of incorporating robot forces, group forces, and learning-based
approaches for force prediction. Our dataset shows higher ADEs compared
to others due to predicting over longer trajectory lengths (139 frames in RPI
compared to 18.1 in ETH and 58.67 in JRDB).

SRFM [13] and the classical SFM [10]. Note, that the JRDB
dataset includes no group dynamics information, meaning
that incorporating group force fgr has no effect. Similarly,
ETH does not include robot presence, leading to identical
results for SRFM and SFM since robot force fr is their only
distinguishing factor.

The results show that NSRFM consistently achieves the
lowest ADE across all datasets, demonstrating good predictive
capability. Additionally, incorporating fgr further reduces
ADE in datasets where group information is available,
highlighting the importance of group dynamics. Furthermore,
the use of robot force fr in SRFM improves performance
over classical SFM, while learning-based optimization of the
forces in NSRFM further enhances accuracy.

These findings confirm that group forces, robot forces, and
learning-based approaches significantly improve trajectory
prediction compared to traditional manually tuned models.

V. CONCLUSION

In this paper, we presented a novel dataset and modeling ap-
proach for improved pedestrian behavior prediction in human-
robot environments. Our Robot-Pedestrian Influence (RPI)
dataset captures pedestrian trajectories without robots, with
a stationary robot, and with a moving robot, highlighting
pedestrian avoidance, neutrality, and attraction behaviors
throughout these cases. Unlike existing datasets, RPI explicitly
annotates pedestrian responses to robots.

To model the different behaviors, we propose the Neural
Social Robot Force Model (NSRFM), an extension of the
traditional Social Force Model (SFM). By integrating neural
network-based forces for pedestrian goals, obstacles, group
dynamics, and robot influence, NSRFM greatly improves the
trajectory prediction as our experimental results demonstrate.
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